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Abstract
This paper concerns a specific pursuit-evasion problem with
a node-located evader which we call the monk problem.
First, we propose a way of verifying a strategy using a new
kind of recursive systems, called EL-systems. We show how
an EL-system representing a graph-instance of the problem
can be represented using matrices, and we give an example
of how this can be used to efficiently implement a verifier.

In the later parts we propose heuristics to construct a
strategy, based on a greedy algorithm. Our main focus is to
minimise the number of pursuers needed, called the search
number. The heuristics rely on properties of minimal stable
components.

We show that the minimal stable components are equiv-
alent to the strongly connected components of a graph, and
prove that the search number is equal to the maximum
search number of its strongly connected components. We
also establish lower and upper bounds for the search num-
ber to narrow the search space.



Referat
Denna rapport avhandlar ett specifikt pursuit-evasion prob-
lem med en hörnplacerad flykting, som vi kallar för munkprob-
lemet. Först föreslår vi ett sätt att verifiera en strategi
med en ny typ av rekursivt system, kallat EL-system. Vi
visar hur ett EL-system som representerar en grafinstans
av munkproblemet kan representeras med matriser, och vi
ger ett exempel på hur detta kan användas för att effektivt
implementera en verifikator.

I de senare delarna föreslår vi heuristiker för att kon-
struera en strategi, baserad på giriga algoritmer. Vårt
huvudfokus är att minimera antalet förföljare som krävs
för att dekontaminera grafen, det så kallade söktalet. Vår
heuristik förlitar sig på egenskaper för minimala stabila
komponenter.

Vi visar att minimala stabila komponenter är ekviva-
lenta med de starka komponenterna i en graf, och härleder
att söktalet är lika med det maximala söktalet för grafens
starka komponenter. Vi etablerar också undre och övre
gränser för söktalet i syfte att minska sökintervallet.
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Chapter 1

Background

Pursuit-evasion problems are a family of problems (see figure 1.1) where the goal is to
find one or more evaders moving in an environment. The most generic description of
the problem is as follows: By using one or more pursuers, how can you guarantee the
capture of all evaders, or as many evaders as possible; in the shortest amount of time,
or with the smallest amount of resources and how many pursuers are needed? The
problem is considered completely solved when all, or as many evaders as possible,
are captured by the pursuers. Thus the solution describes how many pursuers are
needed (also known as the search number), and how the pursuers must move in order
to guarantee capture of all evaders (also known as a strategy).

1.1 Related work

Pursuit-evasion problems was initially seen as search games. The first search game
which is built upon a pursuit-evasion problem was invented in 1965 by Rufus Isaacs,
when he described the so called princess-monster game. The Princess-Monster game
is an example of a differential game. Differential games are continuous versions of
the pursuit-evasion problem and the movement of evaders and pursuers are modeled
using differential equations. In The Princess-Monster game, a princess tries to avoid
a monster in a dark room of arbitrary shape. The princess is captured when she
comes within a certain distance of the monster. The monster and the princess are
moving along known trajectories (paths in space). The monster is moving with
constant speed while the princess can move arbitrarily fast [8].

Other search games include the well-known Cops and Robbers [1], Helicopter
Cops and Robbers [14] and The Hunter-Rabbit game [9]. They are all discrete
versions of the pursuit-evasion problem. Such problems can be modeled with a
graph consisting of vertices and edges.

In Cops and Robbers, there are cops tracking down one or more robbers. The
cops and the robbers are moving in turns. At each turn, one can either remove a
cop, place a cop or move a cop one step (slide a cop along an edge). Helicopter Cops
and Robbers is very similar to Cops and Robbers, but cops are allowed to jump to
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CHAPTER 1. BACKGROUND

Figure 1.1. Classes of pursuit-evasion problems.

any vertex in the graph in one step. The Kelly game is very similar to Helicopter
Cops and Robbers, but the robber is inert, meaning that it only moves when a
cop is about to occupy his position. When this happens, the robber is allowed to
move along any path in the graph not guarded by a cop [7]. Another variant is the
Princess game, where a prince tries to find a princess in a palace modeled with a
directed graph. The princess is forced to move between two adjacent rooms on each
night. On each day, the prince announces in which room he want to look during the
next day, whereby the princess moves in such a way that she will avoid the prince
if she can. The princess is captured when she is forced to move into the room that
the prince is due to visit. In The Hunter-Rabbit game, the goal is for a hunter to
capture a rabbit. Both the rabbit and the hunter are aware of each other’s positions.
The hunter and the rabbit are taking turns in moving, and they are allowed to move
one step at each turn [2].

Aigner et. al. showed that in Cops and Robbers, three cops are enough to
capture all evaders in a planar graph [1]. Fomin et. al proved that the computation
of the search number for Cops and Robbers is NP-hard on general graphs [6]. Paul
Hunter and Stephan Kreutzer showed that the search number for the Kelly game
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1.2. L-SYSTEM

is equal to the minimal width of all its Kelly decompositions, called Kelly width,
and that it is NP-hard to find this number. The Kelly width can be bounded from
above by repeatedly removing vertices from the graph and adding edges to preserve
reachabilility [7]. Furthermore, it is possible to determine if a graph has Kelly width
at most two in polynomial time [12]. John Britnell and Mark Wildon proved that
it is possible to find the princess in linear time for all palaces which do not contain
a cycle or a subgraph isomorphic with a star consisting of three branches of length
three [2].

What Cops and Robbers and similar games have in common are that the pur-
suers are looking for a node-located evader. That is, the evaders are hiding in the
vertices of the graph, and an evader is usually captured when a pursuer occupies
his position. Another variant is where the pursuers are looking for an edge-located
evader. This problem is known as edge searching, which allows the same moves as
in Cops and Robbers, but in edge searching, an evader is captured when a pursuer is
moving along an edge. The most common variant of edge searching is node search-
ing, which was initially stated by Lefteris Kirousis and Christos Papadimitriou in
1986. One might think of this as robots searching for terrorists in a cave. The
terrorists are hiding in the tunnels of the cave and the vertices represent intersection
points where two tunnels meet. An evader hiding in an edge v1 → v2 is captured
when there are pursuers positioned at both v1 and v2 at the same time [11]. This
problem has been heavily studied in literature due to the fact that the problem is
equivalent to many other important problems; such as interval thickness, the gate-
matrix layout problem, and the narrowness problem. Finding the search number
for an edge-located evader is known to be NP-complete, but the problem can be
solved efficiently for some types of graphs, including trees, cographs, block graphs,
permutation graphs, k-starlike graphs and partial k-trees (k ≥ 1) [3].

1.2 L-system
The L-system or Lindenmayer-system was introduced by Aristid Lindenmayer in
1968. The L-system is a recursive system which is a type of formal grammar. The
L-system consists of an alphabet of symbols, a starting state and production rules.
A state consists of a set of symbols. A production rule will map a set of symbols to
a symbol.

The L-system iteratively updates a state. Each state will get expanded by ap-
plying as many production rules as possible which will produce the next state [13].
The relevance of L-systems can be seen in section 3.1.

1.3 Applications
Pursuit-evasion problems have several practical applications. Differential games were
used to design missile guidance systems [8]. A pursuit-evasion problem with a node-
located evader, called Seepage, was used to model lava flow from the Eldfell volcano
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on Iceland [4]. Heuristics for node searching is used to design VLSI-layouts [5].
Our problem could be used to describe strategies for combat- or search and rescue
operations, decontaminating a computer network, or as a graph searching algorithm.
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Chapter 2

Introduction

In this paper we will study a generalisation of The Princess game which we call the
monk problem. While The Princess game is constrained to undirected graphs with
one pursuer, the monk problem allows for an arbitrary number of pursuers in any
directed graph meeting the criteria in 2.3. The name (and the rules) of the problem
is inspired by the original problem presented to the authors by Dilian Gurov.

2.1 Original problem

The problem by Dilian Gurov can be explained as follows: There exists a monk in
the mountains. In the mountains there are five caves lined up linearly. The monk
sits in a cave during the day and meditates. Then every night he moves to an adja-
cent cave. If you are allowed to look in exactly one of the five caves every day; Can
you guarantee that you find the monk and how many days are needed?

The exact origin of the problem is unknown to the authors.

2.2 Overview

The purpose of this paper is to study techniques for solving and verifying solutions
to the monk problem for different graph structures.

In section 3.1 we construct a verifier, based on EL-systems. We prove that the
verifier is correct and give examples of how it operates. In 3.1.1 we transform an EL-
system into a timeline, which can be used to verify a solution by hand. In section 3.3
and 3.4 we establish the theoretical foundation for solving the problem. To do this,
we construct two decomposition algorithms, called stable component decomposition
and cycle decomposition. We prove that stable component decomposition partitions
the graph in such a way that each part can be solved separately. We also show that
cycle decomposition can be used to solve parts of a graph in linear time, as well
as giving an upper bound for the number of pursuers. In section 3.6 we propose
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CHAPTER 2. INTRODUCTION

heuristics for efficiently solving the monk problem with as few pursuers as possible,
based on the theorems presented in earlier sections.

2.3 Problem definition
When referring to the monk problem in this paper, we use the following problem
definition. Note that the evaders and pursuers reside in the vertices of a graph only,
similar to Cops and Robbers.

Definition 1 (Monk graph). A monk graph is a finite graph G with the following
properties:

• G is a directed graph without multiple edges

• G has at least one vertex

• G consists of exactly one component

• G is allowed to contain self-loops (a vertex having an edge to itself)

• It is possible to follow an edge from every vertex in the graph (no dead ends)
if the graph is not a singleton.

We allow a single vertex without edges to fall into the definition of a monk graph.
Such a monk graph is called a singleton.

Definition 2 (The monk problem). Given a monk graph G, the monk problem
consists of answering the following two questions:

• What is the search number (minimum number of pursuers) required to guar-
antee capture of all evaders?

• Given p pursuers, how should they move in order to find all evaders in the
shortest amount of time?

In this paper, we will mainly focus on approximating the search number.

The evaders and the pursuers take turns in moving. On each move (day), the
pursuer might look at (decontaminate) any vertex v in the graph or stay idle. If one
or more evaders reside in v, they are captured. An evader residing in the vertex v1
is forced to move along exactly one edge v1 → v2 on each turn.

Definition 3 (The monk search number decision problem). The monk search num-
ber decision problem (MSNDP) is to determine, given a monk graph G and an inte-
ger k, whether G can be decontaminated in a finite number of steps using k or less
pursuers.
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Definition 4 (The monk strategy length decision problem). The monk strategy
length decision problem (MSLDP) is to determine, given a monk graph G an integer
k and an integer l whether there exists a winning strategy for G using k pursuers of
length l or less.

We will view the vertices in the graph as contaminated (uncaught evader can be
there) and decontaminated (uncaught evader can not be there).

Definition 5 (Contamination). A vertex v ∈ V (G) is contaminated on day n if,
and only if, an uncaught evader can reside in v on day n. All vertices in G are
contaminated on the initial day.

Definition 6 (Decontamination). A vertex v ∈ V (G) is decontaminated on day n
if, and only if no uncaught evader can reside in v on day n, that is:

• Direct decontamination: a pursuer decontaminates v on day n where n ≥ 0,
or

• Indirect decontamination: all vertices in V(G) where V(G) = {u|u → v ∈
E(G)} are decontaminated on day n− 1 where n > 0.

Definition 7 (Recontamination). If v ∈ V (G) is contaminated on day n, for all
neighbours v′ of v: v′ will be contaminated on day n + 1 unless a pursuer decon-
taminates v′ on day n+1. A recontamination occurs when a decontaminated vertex
becomes contaminated on the next day.

With this notation, we can define search strategies.

Definition 8 (Pursuer strategy). A pursuer strategy describes the search order of a
pursuer, that is, the vertex being decontaminated by the pursuer on each day. The
pursuer strategy may also contain idle entries, that is a day where the pursuer is not
decontaminating anything. The length of a pursuer strategy is the number of days
in the pursuer strategy, including the days where the pursuer stays idle.

Definition 9 (Strategy). A strategy with p pursuers consists of p pursuer strategies
of length k. Such a strategy is called a winning strategy if the pursuers are able to
decontaminate all vertices in a finite number of steps.

A strategy is equivalent to a solution for the graph. Furthermore, we can define
exactly what the search number is and what an optimal strategy is.

Definition 10 (Search number). The search number of a monk graph is the mini-
mum amount of pursuers for which there exists a winning strategy.

Definition 11 (Optimal strategy). An optimal strategy is a winning strategy with
the search number, and with the smallest length of the strategy.
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When decomposing a graph into subgraphs, for example using stable component
decomposition described in 3.3, some components might be singletons. Here, we
define the optimal strategy for a singleton.

Definition 12 (Singleton strategy). The optimal strategy for a singleton is a strategy
with zero pursuers staying idle for one day.

2.4 Terminology
When talking about graphs, it is useful to have some terminology.

Given a graph G = (V,E) describing an environment, we denote the vertex set
of G with V (G) and the edge set of G with E(G).

A directed edge from u to v is denoted as u → v. An undirected edge between
u and v is denoted as u←→ v.

The number of vertices in a graph, or the order of a graph, is written as |V (G)|,
|V | or |G|. The number of edges in a graph is written as |E| or |E(G)|.

2.5 Source code
Test cases and implementations of the algorithms described in this paper are avail-
able in our GitHub repository: https://github.com/Realiserad/kex15
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Chapter 3

Results

3.1 EL-system
The EL-system is an extension of the L-System which is an example of a recursive
system. The EL-system utilises one or more stacks representing the strategy for the
specific instance of the monk problem. Each stack corresponds to a pursuer strategy.
We use the EL-system to describe the set of decontaminated vertices on each day.

The EL-system could be used for other applications, so the following is the
general definition.

Definition 13 (The EL-system). An EL-system is a tuple φ = (A,ω, P, σ) where:

• A is the alphabet of symbols

• ω is the starting set of symbols, called the initial state

• P is a set of production rules. A production rule is seen as a function pB :
P(A)→ A where P(A) is the power set of A. pB(A′) = c, c 6= ∅ if, and only if,
B ⊆ A′. Intuitively if pB(A′) = c, then A′ contains the symbols which produce
c. When pB is applied on a state A′ ⊆ A, the value returned is pB(A′). We
denote c as the produced value of pB.

• σ is a set of stacks where each element s in a stack: s ∈ A

The EL-system iteratively updates a working state. We formally define this
process as follows.

Definition 14 (EL-system production process (ELPP)). The EL-system production
process is an algorithm that works as follows:

1. Let S0 = ω.

2. If the stacks are empty then STOP.

3. For each stack, pop the next element E from the stack and let Si := Si ∪ {E}.

9
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4. Parse Si and apply as many production rules as possible. Assign the result to
Si+1.

5. Goto 2.

The result state can then be found in Sk where k is the number of iterations passed
until all stacks are empty.

We will usually write a production rule pB as b1 ∧ b2 . . . ∧ bn ⇒ c where bi ∈ B,
B ⊆ A and c is the symbol produced by pB. We will denote step three of the ELPP
as the sweep step. The EL-system can be used to represent the decontaminated
vertices in a monk graph on each day.

Definition 15 (EL-system monk configuration). Let G be a monk graph where
n = |V (G)| and the vertices are labeled 0, 1, . . . , n−1. An EL-system φ = (A,ω, P, σ)
is monk configured of G if, and only if:

• A = V (G)

• ω = ∅

• P = {px0 , px1 , . . . , pxn−1} where for 0 ≤ i ≤ n−1: xi = {j ∈ A|j → i ∈ E(G)}
and pxi(A

′) = i if, and only if, xi ⊆ A′.

• σ = {σ1, σ2, . . . , σp} contains the p pursuer strategies where the stack is in
order (the first vertex to decontaminate is on top of the stack and the last at
the bottom) and for each σi ∈ σ : |σi| = k. An entry E in the stack is empty,
such that {E} = ∅ if the pursuer is idle.

Lemma 1. Let φ be a monk configured EL-system of a monk graph G. Let S =
{S0, S1, . . . , Sk} be the set of states produced by φ. Then each Si contains the de-
contaminated vertices on day i.

Proof. We will do a proof by induction over i, 0 ≤ i ≤ k. First, we prove that
the sweep step in the ELPP decontaminates the vertices swept by pursuers at any
given day. Donote Si := Si ∪ {E} with the sweep operation. Since we do the sweep
operation for all pursuers it is sufficient to prove its correctness for any of them.
There are three cases:

1. The vertex E is contaminated. It should be decontaminated after the sweep
operation. Proof: The union will include it in Si.

2. The vertex E is decontaminated. It should remain decontaminated after the
sweep operation. Proof: The union will not change Si.

3. The pursuer is idle. Si should remain unchanged. Proof: {E} = ∅ and thus
Si is set to Si ∪∅ which does not change Si.

Note that the value of Si does not change after the sweep step in the ELPP.

10
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• Let i = 0. From step one in the ELPP: S0 = ω = ∅. All vertices are
contaminated before the first sweep step, that is, there are no decontaminated
vertices. Then the sweep step places the pursuers for day 0. All the vertices
on top of the stack should be decontaminated according to definition 6. They
will be decontaminated, which means S0 will contain the vertices from on top
of the stack since the sweep step is correct. The vertices from on top of the
stack correctly corresponds to the first actions of the pursuers according to
definition 15.

• Let i = x + 1. Assume Sx contains the decontaminated vertices on day
x (induction hypothesis). All production rules are applied and a vertex v
should only be in Si if all vertices which have edges into v are decontaminated
according to definition 6. From definition 15 we know that all produced values
will be distinct since they correspond to {0, 1, . . . , n − 1}. Let v ∈ Si. Let
pB be the production rule which produces v. Definition 13 in combination
with that the direct decontamination of definition 6 has not happened yet
implicitly states (indirect decontamination) that v ∈ Si if, and only if, the
B ⊆ A in pB is a subset of Sx. From definition 15 B consists of the vertices
which have edges into v. The insight is that v ∈ Si if, and only if, all vertices
which have edges into v were decontaminated in the previous state, which is
what we wanted to prove. Only the correct indirect decontaminations will
occur since the induction hypothesis states that the previous state contains
the correctly decontaminated vertices. Then, since the sweep step is correct
and takes care of the direct decontamination of definition 6, Si will contain
only the decontaminated vertices.

If the EL-system production process terminates with Sk = A, the strategy is a
winning strategy. However, we do not know if the strategy is optimal, there might
still be a shorter strategy which also yields A.

Lemma 2. Let φ be a monk configured EL-system of a monk graph G. Let S =
{S0, S1, . . . , Sk} be the set of states produced by φ. Then if, and only if, the EL-
system production process stops with Sk = A the strategy is winning.

Proof. From lemma 1 we have that Sk contains the vertices which are decontami-
nated. From definition 15 we have that A = V (G). From the definition of a winning
strategy all vertices must be decontaminated after all pursuer strategies have been
applied in parallel, which is exactly what Sk = A = V (G) corresponds to.

Lemma 3. If the input is finite for the EL-system production process and all oper-
ations are done in finite time, the EL-system production process terminates in finite
time.

Proof. The stacks have a finite length k ≥ 0 and for each iteration of step two to
five each stack has its size decreased by one. The stacks must then be empty after
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k iterations which causes the EL-system production process to terminate. Since k
is finite, the EL-system production process will terminate in finite time.

Theorem 4 (EL-systems verify the monk problem). A monk configured EL-system
can verify any finite strategy in finite time.

Proof. We have that the EL-system production process will terminate from lemma
3. We have that it can determine whether the strategy was winning or not from
lemma 2.

3.1.1 A graphical representation
The EL-system allows for a compact and visually appealing representation of a
strategy to the monk problem. In this section we will study the original formulation
of the monk problem stated by Dilian Gurov. There exists exactly four optimal
strategies, all guarantee that the monk will be found in six days or less regardless
of how he moves. We will present one of the strategies below.

The five caves can be described with the directed graph in figure 3.1. A vertex
corresponds to a cave and an edge in the graph indicates that a movement is possible
between two caves. Each cave is labeled with a number one to five. Given this, a
pursuer strategy can be described as [2, 3, 4, 4, 3, 2]. This means that if we look in
the cave labeled with two the first day, then the cave labeled with three the second
day and so on, we will eventually find the monk in at most six days. A way of
visualising the strategy is to draw a timeline as in figure 3.2.

The timeline can be interpreted like this. The graph on row i represent the state
on day t = i. A vertex is coloured with red if we choose to directly decontaminate this
cave on day i. The vertices coloured with either red or yellow are decontaminated
vertices and the goal is to colour all vertices in as few steps as possible. If a vertex
is decontaminated, all outgoing edges from this vertex are blocked, such edges are
coloured in red. If all incoming edges to a vertex are blocked, the vertex is considered
indirectly decontaminated on the next day and will be coloured in yellow.

Suppose we know that vertices two and four are decontaminated on day i. We
can then conclude that vertex three is decontaminated on day i+1 because the only
way to get to vertex three is by going from vertex two or four, and we knew that
the monk was not there, hence he cannot be in vertex three during the next day.

In the sample strategy we choose to decontaminate vertex two at day one, which
means that the edges 2→ 1 and 2→ 3 will be blocked. At day two, the only incom-
ing edge to vertex one is blocked, so this vertex is decontaminated. However, none of

Figure 3.1. The graph representation of Dilian Gurov’s monk problem.
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Figure 3.2. One of the four optimal strategiess for the monk problem visualised
with a timeline. The set of decontaminated vertices are marked with yellow or red.
On day six, the set of decontaminated vertices comprises the whole set of vertices,
and if the monk exists, he must have been found.
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the other vertices are blocked, for example it is still possible to come to vertex three
during day two if the monk is in vertex four on day one. The second day we choose
to decontaminate vertex three which will block all incoming edges to vertex two on
day three. Note that on day three, vertex one is contaminated because the monk
could have followed the path 3 → 2 → 1. However, if continuing to decontaminate
the caves [4, 4, 3, 2] all possible paths starting in any of the five vertices at day one
will be cut off, and we can conclude that the monk will be found in at most six days.

In the EL-system for the monk problem we have three production rules:

• 2⇒ 1 (1)

• 4⇒ 5 (2)

• n− 1 ∧ n+ 1⇒ n where 1 ≤ n ≤ 5

The last rule can be explicitly written as

• 1 ∧ 3⇒ 2 (3)

• 2 ∧ 4⇒ 3 (4)

• 3 ∧ 5⇒ 4 (5)

If we let the alphabet for the monk problem consist of the symbols 1 to 5 and we
input the pursuer strategy [2, 3, 4, 4, 3, 2], iterating the EL-system production
process gives the following:

• S0 = ∅ ∪ {2} (pop 2)

• S1 = {1} ∪ {3} (use rule 1 and pop 3)

• S2 = {2} ∪ {4} (use rule 3 and pop 4)

• S3 = {1, 3, 5} ∪ {4} (use rule 1, 4, 2 and pop 4)

• S4 = {2, 4, 5} ∪ {3} (use rule 3, 5, 2 and pop 3)

• S5 = {1, 3, 4, 5} ∪ {2} (use rule 1, 2, 4, 5 and pop 2)

3.1.2 Matrix representation of the EL-system
For implementation purposes, we need an efficient representation of the EL-system
given a graph G with m vertices. This is possible by using an m×m matrix P which
represents the production rules. A production rule a1∧a2 . . . ∧an ⇒ B corresponds
to putting a single one in columns a1, a2, . . . , an on row B. If each vertex in the
graph is labeled with a number 1 ≤ i ≤ m; then the set of decontaminated vertices
is represented by a column vector s with m elements where the i:th element is a
single one if vertex number i is decontaminated, or zero if vertex i is contaminated.
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Observation 1. P is the adjacency matrix of G.

The vertices being directly decontaminated by pursuers during day t are repre-
sented by a column vector r with m elements. The i:th element in r is a single one
if it is being directly decontaminated by a pursuer or a single zero otherwise.

The set of decontaminated vertices on day t+ 1 is given by the formula

st+1 = P � st ] r

Two mathematical operations called reduced multiplication (rmul), denoted with
� and reduced addition (radd), denoted with ] are used. These two operations are
described in psuedo C-code below:

1 // P i s an m∗m matrix and s i s an m∗1 column matrix
2 matrix rmul ( matrix P, matrix s ) {
3 matrix c , w; // c and w are both m∗1 column matr i ce s
4 f o r ( i n t row=0; row<m; row++) {
5 f o r ( i n t column=0; column<m; column++) {
6 i f (P [ row ] [ column]==1) {
7 // w[ i ] should conta in the Hamming
8 // weight f o r row i in the matrix P
9 w[ row]++;

10 }
11 }
12 }
13 c=P∗ s ; // perform matrix mu l t i p l i c a t i o n
14 f o r ( i n t i =0; i<m; i++) {
15 i f ( c [ i ]>0) {
16 i f (w[ i ]==c [ i ] ) {
17 c [ i ]=1;
18 } e l s e {
19 c [ i ]=0;
20 }
21 }
22 }
23 re turn c ;
24 }
25 // both s and r are m∗1 column matr i ce s
26 matrix radd ( matrix s , matrix r ) {
27 f o r ( i n t i =0; i<m; i++) {
28 s [ i ]+=r [ i ] ;
29 i f ( s [ i ]>1) {
30 s [ i ]=1;
31 }
32 }
33 re turn s ;
34 }

15
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The matrix representation for each of the steps in fig 3.1 looks like this:
0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

�


0
0
0
0
0

 ]


0
1
0
0
0

 =


0
1
0
0
0




0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

�


0
1
0
0
0

 ]


0
0
1
0
0

 =


1
0
1
0
0




0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

�


1
0
1
0
0

 ]


0
0
0
1
0

 =


0
1
0
1
0




0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

�


0
1
0
1
0

 ]


0
0
0
1
0

 =


1
0
1
1
1




0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

�


1
0
1
1
1

 ]


0
0
1
0
0

 =


0
1
1
1
1




0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

�


0
1
1
1
1

 ]


0
1
0
0
0

 =


1
1
1
1
1


The correctness of the verifier can be motivated as follows: The state of each vertex
v (contaminated or decontaminated) on day t + 1 is determined by matrix multi-
plication of row v in P with the column vector s. The requirement for v to be
decontaminated is that all vertices with an endpoint in v are decontaminated on
day t. The intermediate value in c[v] corresponds to the number of vertices with
an endpoint in v which are decontaminated on day t. Since the sum c[v] only gets
incremented when there exists an edge i→ v (P [v][i] = 1) and vertex i is decontam-
inated (s[i] = 1), it follows that if the sum is equal to w[v] (the Hamming weight of
row v), then all vertices which has an edge to v are decontaminated, and thus v will
be decontaminated on day t+1, which corresponds to c[v] being equal to one when
rmul returns.
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If the number of vertices in the graph does not exceed the number of bits which
can fit in a register, it is possible to calculate the next state in linear time. A
row in the matrix P and the state s can be represented as integers. The rmul
operation can be translated to bitwise and, and radd can be translated into bitwise
or. A bitcounter is used to check if the strategy decontaminates all vertices in graph.
More precisely, let the matrix P and the strategy A be represented as an array of
integers. Each integer can be seen as a bitvector B with REG_SIZE bits. The state
is also represented as a bitvector with REG_SIZE bits, and bit b in the next state
on round i is calculated by performing bitwise and with P [b] followed by bitwise
or with A[i]. The criterion for decontamination is checked each time a vertex is
decontaminated by comparing a bitcounter bc with the number of vertices in the
graph (NUM_NODES ).

1 REG_SIZE = s i z e o f ( i n t )
2 #de f i n e BITMASK( i ) 1 << (REG_SIZE − ( i ) )
3
4 a s s e r t (NUM_NODES <= REG_SIZE)
5 s , sn = 0 ; // cur rent and next s t a t e
6 bc = 0 ;
7 f o r ( i = 0 ; i <= A. l ength ; i++) {
8 /∗ rmul ∗/
9 f o r ( i n t j = 0 ; j < NUM_NODES; j++) {

10 i f (P [ j ]&sn == P[ j ] ) {
11 s |= BITMASK( j ) // s e t b i t j
12 i f (++bc == NUM_NODES) return "OK"
13 }
14 }
15 /∗ radd ∗/
16 s |= A[ i ]
17
18 sn = s ;
19 s = 0 ;
20 bc = 0 ;
21 }
22
23 re turn "NOT OK"

3.2 Problem complexity
To be able to use an EL-system as a polynomial time verifier, we need to make the
assumption that any optimal strategy is polynomial in size.

Conjecture 5. The length of any optimal strategy for a graph G is bounded by
P (|V (G)|) where P is a polynomial.

Corollary 5.1. MSNDP and MSLDP are in NP.

Proof. Given an m ×m adjacency matrix representing a matrix G and a strategy
S, we can determine if the strategy is winning using an EL-system.

17
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Calculating the Hamming weight for each row in the adjacency matrix can be
done in O(m2) time, note that this only needs to be done once. Matrix multiplica-
tion in rmul is also done in O(m2) and radd goes in linear time, which means that
calculating si+1 can be done in O(m2). If we assume that all vertices are decontam-
inated on day t = n, the time complexity of verifying a strategy is O(nm2), which
is polynomial with respect to input size.

The strategy S given as a witness for MSNDP(G, k) must be checked so that it
uses at most k pursuers. The k-value is the maximum number of pursuers used in
any of the i steps, and can be calculated in linear time (by counting the number of
ones in the column matrix r). The answer to MSLDP(G, k, l) is YES if and only
if the length of S is equal to l and the number of pursuers in the strategy is equal
to k. The length of the strategy is calculated by counting the number of iterations
in the EL-system production process which takes no extra time and the number of
pursuers can be determined in the same way as for MSNDP. Since we assume (see
conjecture 5) that the length of the strategy is polynomial of the size of the graph,
this process runs in polynomial time.

Conjecture 6. MSNDP is NP-hard.

Corollary 6.1. MSLDP is NP-hard.

Proof. We can reduce MSNDP to MSLDP by letting MSLDP check for a strategy
of any length. If a strategy of length l is winning, then a strategy with length l + i
i > 0 must be winning too, since pursuers can stay idle for i days. The length of
a strategy for a graph with n vertices is bounded by the number of possible states
for the graph. Each vertex can be either contaminated or decontaminated, thus the
number of states becomes 2n. Hence, the reduction is a simple call to MSLDP with
l = 2n.

1 MSNDP(G, k )
2 re turn MSLDP(G, k , 2^|G| )

Corollary 6.2. MSNDP and MSLDP are NP-complete.

Proof. If MSNDP and MSLDP are NP-hard, it remains to be shown that a solution
to MSNDP and MSLDP can be verified in polynomial time, which is shown in
corollary 5.1.

3.3 Stable component decomposition
In this section we introduce stable components and their relevance to the monk
problem. The decomposition simplifies the problem and the different parts can be
solved separately which provides the possibility to make parallel computations.

There might exist some parts of the graph, which once decontaminated will
remain decontaminated forever, regardless of how the evader moves (see fig 3.3).
We call such a part of the graph a stable component.
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Figure 3.3. The vertices of this graph can be partitioned into one red set and one
blue set using the stable decomposition algorithm. This works because once an evader
has traveled along the edge 4→ 3 she can no longer come back to the red set. Thus,
we can focus on finding a strategy for decontaminating the red set first, and then
move on to decontaminate the blue set. The vertex with a green circle is called a
transit vertex and the green edge is called a transit edge.

Figure 3.4. An example of all the stable components of a graph. There is a stable
component inside each ring. Note that there are no incoming edges into any ring
from outside of it.

Definition 16 (Stable component). Given a monk graph M , a stable component S
is a non-empty subgraph of M where:

• there are no edges in M which start from a vertex outside of S, and end in a
vertex in S. More formally: ¬∃(u→ v) ∈ E(M) : v ∈ V (S)∧u ∈ V (M)\V (S)

• S consists of exactly one component

An example showing all the stable components of a graph can be seen in fig 3.4.
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Theorem 7. If S is a stable component of the monk graph G and all vertices in S
are decontaminated on day ti then they will remain decontaminated on day ti+1.

Proof. Assume that v ∈ S is recontaminated on day ti+1, then the recontamination
source must come from a vertex u /∈ S since all vertices in S are decontaminated
on day ti and decontaminated vertices can not recontaminate any vertices. But if
u /∈ S recontaminate v there must exist an edge u→ v, which contradicts the claim
that S is a stable component of G. Thus all v ∈ S remain decontaminated on day
ti+1.

Theorem 7 is the basis of stable component decomposition, if a set of vertices can
not be recontaminated we can disregard the subgraph consisting of those vertices
and focus on finding a search strategy for the remainder of the graph.

Proposition 1. A monk graph is a stable component of itself.

Proof. Since for the whole monk graph V (M) = V (S) we will have V (M)\V (S) = ∅
and thus there can be no incoming edges to M . M consists of one component per
definition, and thus, M is also a stable component.

Lemma 8 (No return property). Let S be a stable component of the monk graph
M and let v be a vertex outside of S reached by following an edge from a vertex in
S. There does not exist a walk from v into a vertex in S. More formally: ∀u→ v ∈
E(M)¬∃w ∈ V (S) :Walk(v, w) where u ∈ V (M), v ∈ V (M)\V (S) and Walk(x, y)
is the predicate which is true if, and only if, there exists a walk in M starting in x
and ending in y.

Proof. Assume there exists such a walk. The walk starts outside of S and then
eventually enters S. To do this there must exist an edge v → u ∈ E(M) where u ∈ S
and v ∈ V (M) \ V (S). Such an edge implies that S is not a stable component,
causing a contradiction. Thus, no such walk can exist.

Definition 17 (Stable reduction). LetM be a monk graph. R = {(R0, S0), (R1, S1),
. . . , (Rk, Sk)} is a stable reduction of length k+1 if, and only if, R0 =M and Sj is
a stable component of Rj and Ri+1 is the graph obtained by removing Si from Ri,
0 ≤ i < k, 0 ≤ j ≤ k. No Sj is the empty graph. The result of removing Sk is the
empty graph.

Stable components become more useful when defining a minimal stable com-
ponent. A minimal stable component can not be decomposed into smaller stable
components.

Definition 18 (Minimal stable component). A minimal stable component Smin of
a monk graph M is a stable component of M which can not be decomposed into
smaller stable components. More formally: there does not exist a stable component
S′ of Smin where V (S′) ⊂ V (Smin).
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Figure 3.5. An example of a minimal stable reduction R =
{(R0, S0), (R1, S1), . . . (R4, S4)}. Ri−1 is the graph in box i and Si−1 is the
subgraph in the ball of box i, 1 ≤ i ≤ 5. The subgraph Si−1 is removed at each stage
and the remaining graph is Ri.

Definition 19 (Minimal stable reduction). A minimal stable reduction is a stable
reduction R = {(R0, S0), R1, S1), . . . (Rk, Sk)} where for 0 ≤ j ≤ j: Sj is a minimal
stable component of Rj.

An example of a minimal stable reduction can be seen in figure 3.5.

Lemma 9 (Stable decomposition). If R = {(R0, S0), R1, S1), ..., (Rk, Sk)} is a mini-
mal stable reduction ofM then {V (S0), V (S1), ..., V (Sk)} forms a partition of V (M).

Proof. We will prove that the parts are disjoint and that all vertices can be found in
the partition. Assume there exists two i, j such that V (Si) ∩ V (Sj) = C 6= ∅, then
v ∈ C must exist, but one of Si and Sj must have come first in the stable reduction
and thus removing v from the remaining monk graphs in the reduction, which means
that whichever came second could not contain v. Because of this contradiction, the
negative must hold; ∀i, j : V (Si) ∩ V (Sj) = ∅, that is, all parts are disjoint.
Assume that ∃v ∈ M∀i : v /∈ V (Si). This implies that v is still left after the
reduction, which contradicts that the result is an empty graph. Therefore, the
negative must hold: ∀v ∈M∃i : v ∈ V (Si).

Lemma 10 (Stable reduction strategy). A stable reduction R = {(R0, S0), R1, S1), . . . ,
(Rk, Sk)} of a monk graphM forms a decontamination sequence Q = {S0, S1, ..., Sk}
which guarantees that M can be cleaned by decontaminating Q in order.

Proof. We can assume we have a winning strategyWj for each Sj . The total strategy
is [W0,W1, ...,Wk], 0 ≤ j ≤ k. We will now show that the total strategy is winning.
For each i: Si have no incoming edges from contaminated vertices outside of Si,
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if it did, it would not be a stable component of Ri. This implies the only vertices
which can recontaminate Si is in Si itself, thus Si can be decontaminated by Wi

without risk of recontamination. Note that after Wi has decontaminated Si, Si will
be decontaminated during the remaining days. Since the vertices of the subgraphs
form a partition ofM , all vertices inM will be decontaminated by the total strategy.
Therefore, the total strategy is winning.

Theorem 11 (Stable reduction search number). Let R = {(R0, S0), R1, S1), ...,
(Rk, Sk)} be a minimal stable reduction of a monk graph M . The search number of
M is equal to the maximum search number of {S0, S1, . . . , Sk}.

Proof. Let Zi be the search number of Si. Observe (Ri, Si) ∈ R, there is no way
to decontaminate Si from outside of Si since there are no edges from contaminated
vertices outside of Si which end in Si. Therefore, the only way to decontaminate Si
is to use a winning strategy for Si, and the optimal one uses Zi pursuers. Let W be
a total winning strategy, Z be the search number of M , and Zmax be max({Zi|0 ≤
i ≤ k}). Assume that Z < Zmax and let Smax ∈ {Si|0 ≤ i ≤ k} be a subgraph which
has search number Zmax, then Smax can not be cleaned with only Z pursuers and
thus W can not be a total winning strategy. Therefore, Z ≥ Zmax. Since a monk
graph can be decontaminated by any amount of pursuers larger than or equal to its
search number, Zmax is also a sufficient limit for each Si. Thus, Z = Zmax.

The properties of a minimal stable component can be found in a strongly con-
nected component.

Theorem 12. Let R = {(R0, S0), R1, S1), ..., (Rk, Sk)} be a minimal stable reduction
of a monk graph M . The set Q = {Si|0 ≤ i ≤ k} is equal to the strongly connected
components of M .

Proof. We will first prove that the components in Q are strongly connected. Assume
Si is not strongly connected. Then there must exist two distinct vertices u, v ∈ Si
such that there exists no walk in Si from u to v or there exists no walk in Si from
v to u. Assume neither walk exists, then u and v belong to different components,
which contradicts that Si is a stable component, so at least one of the walks must
exist.

Assume it is a walk from u to v that exists. We will show that a walk v to u
must also exist. We know there exists an edge into v since there is a walk from u
to v. Assume only the incoming edge/edges exists and no outgoing walks, then the
subgraph S′i of Si with v removed is a stable component of Si and V (S′i) ⊂ V (Si),
which contradicts that Si is a minimal stable component. Therefore, there must also
exist a walk v to w where w ∈ V (Si) \ v.

Let Tx = {w ∈ Si|Walk(x,w)}, we have showed that Tv is not empty. Assume
u /∈ Tv. Then the subgraph consisting of the vertices in Tu \ Tu ∩ Tv form a smaller
stable component of Si which contradicts that Si is a minimal stable component.
Thus, u ∈ Tv, that is, there exists a walk from v to u. Si is strongly connected.
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We will now show that each strongly connected component in Q can not be
expanded. Assume Si can be expanded by adding a vertex x ∈ V (M) \ V (Si).
According to lemma 9, x must either belong to Sh or Sj where h < i < j. We
also know implicitly from definition 17 that V (Si) ⊂ V (Rh) and V (Sj) ⊂ V (Ri).
Assume x ∈ Sh, then Sh is not a stable component since there exists an edge in
Rh in the walk from Si into x. Therefore, x /∈ Sh. Assume x ∈ Sj , then Si is
not a stable component since there exists an edge in Ri in the walk from x to Si.
Therefore, x /∈ Sj . The contradiction implies that Si can not be expanded. Thus,
Q consists of the strongly connected components of M .

3.4 Cycle decomposition
In this section we will propose a decomposition for G based on cycles. The de-
composition provides an algorithm for finding a strategy in linear time for certain
subgraph structures, and for splitting strongly connected components by guarding.
The cycle decomposition works as follows:

1. Start by identifying all elementary circuits (cycles) C in the graph

2. Build a new undirected graph G′ as follows: Let each cycle in C be a vertex
in G′. Create an edge c1 ←→ c2 if c1 ∩ c2 6= ∅.

3. Denote a component in G′ with DG′ . If DG′ consists of the cycles d1, d2 . . . dn
then we form a part of the partition of G as V (d1) ∪ V (d2) ∪ . . . V (dn).

4. Each vertex in G which does not belong to a component in G′ is itself a part
of the partition of G. Such a part is called a simple part.

There exists a trivial strategy if the cycle decomposition of a stable component
produces a clique, and all cycles share a common element.

Theorem 13 (Clique theorem). If G′ is the graph obtained by running the cycle
decomposition algorithm on a a monk graph G, P = V (d1) ∪ V (d2) ∪ . . . V (dn) is
the part formed from the component DG′ ⊆ G′, and we define Cmax as the number
of vertices in the largest cycle in DG′; then if DG′ is a clique, and P = V (d1) ∩
V (d2) ∩ . . . V (dn) 6= ∅, we can decontaminate P by staying at one of the nodes in
V (d1) ∩ V (d2) ∩ . . . V (dn) for exactly Cmax days.

Proof. The cut R = V (d1)∩V (d2)∩ . . . V (dn) contains the elements which all cycles
in the graph has in common. Let Rg ∈ R be the element being guarded. Since R is
not empty per definition, Rg must exist. Given that an evader is forced to move on
each day and that the graph is finite, the evader must eventually complete a cycle
C in the graph. Rg is a vertex which belongs to all cycles in the graph, so Rg ∈ C.
Since the evader has visited each vertex in C, she must also have visited Rg, where
the evader was captured.
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Figure 3.6. An example of a graph G’ obtained by running the cycle decomposition
algorithm on a graph G. Each vertex represents a cycle in G and an edge between
two vertices means that the cycles have a common element.

From here is follows that an evader must have been captured after a cycle has
been traversed. The largest cycle has length Cmax, and one vertex is visited on each
day; thus the longest path which an evader can follow without visiting Rg must have
length Cmax − 1. As such it suffices to stay at Rg for exactly Cmax days.

For each component in G′ which is not a clique, the strategy is non-trivial.
Here follows an example of how the cycle decomposition algorithm works. The

graph which is going to be partitioned is shown in fig 3.3.
The cycles of this graph are c1 = [4, 6], c2 = [4, 5, 6], c3 = [5], c4 = [1, 3],

c5 = [2, 3] and c6 = [3]. The graph G′ will consist of two components D1 = [c1, c2, c3]
and D2 = [c4, c5, c6] as shown in fig 3.6.

We can now partition the vertices ofG in the parts P1 = [4, 5, 6] and P2 = [1, 2, 3].
Since the component D2 is a clique we can decontaminate P2 by looking twice at
vertex 3 (c4 ∩ c5 ∩ c6).

3.5 Lower and upper bounds
To avoid looking for a strategy with k pursuers when none exist, it is of great interest
to narrow the search space by establishing lower and upper bounds for the search
number. In this section we give examples of a couple of different techniques on how
to do this for a stable component G.

Definition 20 (Lower bound). A lower bound l for a monk graph G is an integer,
such that there exists no optimal strategy for G using less than l pursuers.

Definition 21 (Upper bound). An upper bound u for a monk graph G is an integer,
such that any optimal strategy utilises at most u pursuers.
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Proposition 2 (Lower bound using minimum indegree). Let G be a monk graph.
Then minimum indegree x of the vertices in G is a lower bound for G.

Proof. We observe the two parts of definition 6. Let s be the search number of
G. Note that no indegree can be greater than |V (G)|, since that implies that there
are more vertices in the graph than |V (G)|. Assume s < x. If s = V (G), then
x > |V (G)| which leads to a contradiction. We know that s ≤ |V (G)| from proposi-
tion 4, thus s < |V (G)|. This implies that a strategy must be longer than one day,
since all vertices can not be directly decontaminated during the first day. Therefore,
atleast one vertex must be indirectly decontaminated for the number of decontam-
inated vertices to increase between two days. Indirect decontamination of a vertex
v requires that all vertices which have incoming edges into v are decontaminated in
the previous day. Since x is the minimum indegree, we need atleast x pursuers to
directly decontaminate the vertices which have incoming edges into v. Since s < x,
s pursuers can not decontaminate the graph, which contradicts that s is the search
number. Therefore, the assumption must be wrong and x ≤ s, that is, the minimum
indegree is a lower bound for G.

Proposition 3 (Lower bound using cliques). If G contains a clique with n vertices,
then n− 1 is a lower bound for G.

Proof. An evader residing in one of the vertices in the clique can go to one of n− 1
vertices during his next turn and still remain in the clique. Thus, to force the evader
out of the clique, we must use exactly n− 1 pursuers, unless each of the vertices in
the clique has a self-loop, in which case n pursuers are required.

Proposition 4 (Trivial upper bound). Let G be a monk graph. Then |V (G)| is a
upper bound of G.

Proof. All vertices in G can be decontaminated in one day by direct decontamina-
tion, that is, placing a pursuers on each vertex.

We can also use the cycle decomposition G′ to find an upper limit for G.

Observation 2 (Reduction of G′). We can remove an edge u↔ v in the graph G′

by guarding the vertices V (u) ∩ V (v).

If we remove edges from G′ by guarding vertices in G as described above, we
obtain a reduction of G′. For the ease of notation, such a reduction is denoted by
G− and is defined by a sequence of reductions s1, s2 . . . sn where each si is a removal
of an edge in G′. The number of vertices that must be guarded in G at step i is
denoted with |si|. See fig 3.8 for an example. From here follows the proposition we
are looking for.

Proposition 5 (Upper limit using cycle decomposition). If s1, s2 . . . sn is the se-
quence used to receive the reduction G− with each component in G− being a clique
with each cycle in the clique having a common element, an upper bound for G can
be expressed as 1 +

∑n
i=1 |si|.
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Proof. Since the cycle decomposition partition all vertices in G, it follows that any
vertex in G must either belong to a clique in G′ (equivalent to a component and
clique in G−), or being guarded due to the reduction of G′. If an evader resides
in any vertex being guarded, they are captured immediately. It is not possible to
move between two cliques in G′ since any such connection must be guarded. Thus
any evader must reside in the vertices of G corresponding to a clique in G−. These
cliques can be decontaminated in sequence according to the strategy which follows
from theorem 13. Since it is impossible for an evader to move between the cliques in
G′, considering the positioning of the

∑n
i=1 |si| guards, we can inspect each clique

separately, using exactly one pursuer. From here the result follows.

We end this section by giving an estimate of the search number.

Definition 22 (Edvin’s estimate). Let I(v) be the indegree of v, that is I(v) = |{u ∈
V (G)|u→ v ∈ E(G)}|. Let Imax be the maximum indegree of all nodes v ∈ V (G).

Edvin’s estimate is the smallest number x for which there exists a path v0, v1 . . . vk
of distinct vertices; such that for all vertices vi, 0 ≤ i ≤ k in the path, it holds that
I(vi) ≤ x+ i and I(vk) = Imax.

The value x in Edvin’s estimate can be found efficiently using depth-first traversal
of G. Here is an example of how such an algorithm can be implemented:

1 ESTIMATE(G)
2 // Sort v e r t i c e s in ascending order based on indegree
3 sort_ascending ( v e r t i c e s )
4 f o r v_0 in v e r t i c e s ( ascending order )
5 x = indegree [ v_0 ]
6 i f validPathDFS (v_0 , x , 0 , v i s i t e d , indegree )
7 es t imate = x
8 re turn max(1 , x )
9

10 validPathDFS (v_i , x , i , v i s i t e d , indegree )
11 i f v i s i t e d [ v_i ] or indegree [ v_i ] > x + i
12 re turn f a l s e
13 i f i ndeg ree [ v_i ] = max( indeg ree )
14 re turn true
15
16 v i s i t e d [ v_i ] = true
17
18 f o r each neighbour to v_i
19 i f DFS( neighbour , x , i +1, v i s i t e d , indegree )
20 re turn true
21
22 v i s i t e d [ v_i ] = f a l s e
23 re turn f a l s e
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Figure 3.7. A greedy algorithm which selects a vertex to decontaminate.

3.6 A heuristic approach

It is still unknown if there exists a polynomial-time algorithm for MSLDP and
MSNDP. In this section we will try to find a non-exact solution to MSLDP and
MSNDP based on heuristics. The selection process is based on a greedy algorithm,
which selects a vertex v to decontaminate based on the schema in 3.7.

The heuristics starts with the the partition step. The partition step is based on
minimal stable components (definition 18.) The subgraph induced by the vertices
of each partition is a strongly connected component (theorem 12).

The heuristics process the strongly connected components S, either one by one or
in parallel. The components with the highest search number should be solved first to
minimize the length of the solution due to theorem 11. We propose a calculation of
the search number using Edvin’s estimate to determine the order of the components
in S.

The search step is executed for each component in S and consist of a search
for a winning strategy by repeatedly execute a method SOLVE. It implements a
recursive algorithm which selects a set of vertices to decontaminate at each step
in the algorithm. The vertices to be decontaminated is given by a selector. The
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Figure 3.8. A monk graph G, the corresponding cycle decomposition G′, and a
reduction G− yielding an upper limit of four. The graph G− is given by removing
the edges in G′ marked with blue to isolate the cycle [4, 5] and put a guard on vertex
four. The blue component is a clique with a common element (vertex four marked
with blue) and can be solved easily by theorem 13. Since the remaining vertices
form a clique in G′ without a common element, it needs to broken down in smaller
pieces. This is done by removing the edges marked in lilac, positioning guards at
vertex two and three. A non-optimal strategy derived from this decomposition is to
stay at vertices [1, 2, 3, 4] at day one, followed by vertices [2, 3, 4, 5] at day two. The
optimal strategy uses two pursuers.

28



3.6. A HEURISTIC APPROACH

selector we propose is based on a greedy algorithm which maximises the number of
decontaminated vertices on the next day. The search can be, for example, a linear
search, or a binary search. Once a winning strategy has been found, we continue
to process the next component in S. The bounds used in our binary search was
the minimum indegree as lower bound (proposition 2) and the number of vertices
as upper bound (proposition 4). If an ordinary binary search is used, the search
step has to be repeated O(log(upper − lower)) times, which is the best possible
asymptotic behavior.

The heuristics ends with the merge step which begins when all components in S
have been solved. In the merge step, the solutions for each of the strongly connected
components are put together to form a solution for the whole graph (lemma 9). The
search number for the whole graph is given by the maximum search number for any
of its strongly connected components (theorem 11).

The order for how the strategies should be put together is defined by the topolog-
ical order of a DAG D where each vertex S1, S2 . . . Sn in D is a strongly connected
component. An edge Sm → Sn in this DAG, means that there exists a vertex
u ∈ V (Sn) with an endpoint in V (Sm). Such an edge is called a transit edge and the
u is called a transit vertex. A topological order for D can be expressed as a sequence
S1, S2 . . . Sn of minimal stable components, as described in a stable reduction (see
definition 17).

Proposition 6. The heuristics using: a selector which picks only one vertex, and
binary search can be implemented with time complexity O(|V |2 log |V | ∗K ∗L ∗ |E|),
where L is the bounded length of a solution and K is the number of pursuers used
in the strategy.

Proof. The search step is repeated O(log |V |) times. In each search step we do the
following work at most K ∗ L times:

1. Check if current state is visited and mark a state as visited This can
be done in O(|V |) time by finding all decontaminated vertices. The vertices
are hashed and checked against a bloom filter which goes in O(1) time.

2. Check if current state is winning This is done in O(|V |) by counting the
number of decontaminated vertices.

3. Select the vertex to decontaminate For each vertex: calculate the number
of decontaminated vertices in the next state (select candidate vertices). If the
graph representation contains indegree for each vertex and the vertices are
stored in an adjacency list, the time complexity for finding candidate vertices
is O(|V | + |E|). The candidate vertices are added to a maxheap which takes
O(|V | log |V |) whereby we pick a random element in O(1) time. Thus, the
time complexity for this step is O(|V | log |V |+ |E|).

4. Calculate current and next state Copying the states goes in O(|V |) time.
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5. Decontaminate the vertex selected by the selector The indegree for
each neighbour to the vertex selected must be reduced by one, which goes in
O(|E|) time.

6. Calculate the next state (transition) Restoring indegree for each vertex
goes in O(|V |)| time. Decontaminating the vertices from the current state goes
in O(|V ||E|) time.

The time complexity for repeating the search step once becomesO(3∗|V |+|V | log |V |+
2 ∗ |E|+ |V ||E|) ⊆ O(|V | log |V |+ |V ||E|). The total time complexity for the search
step is O(|V |∗log |V |2∗K∗L+|V | log |V |∗K∗L∗|V ||E|). The partition step involves
finding the strongly connected components and the topological order which can be
done in O(|V | + |E|). Merging the solution can be done in O(|V | ∗ L). The time
complexity for the all three steps becomes O(|V | ∗ log |V |2 ∗K ∗L+ |V | log |V | ∗K ∗
L∗|V ||E|+|V |+|E|+|V |∗L) ⊆ O(|V |∗log |V |2∗K∗L+|V | log |V |∗K∗L∗|V ||E|) ⊆
O(|V |2 log |V | ∗K ∗ L ∗ |E|).

3.6.1 The partition step
The first step involves finding subgraphs for all strongly connected components in G.
This can be done in O(|V |+ |E|) time using Tarjan’s strongly connected components
algorithm [15]. To minimise the length of the strategy found in the search step, the
subgraphs are sorted in descending order based on an estimate of the search number.
The estimate used is Edvin’s estimate (see definition 22).

1 PARTITION_STEP(G)
2 // Compute a DAG of s t r ong l y connected components
3 DAG strong_components = TARJAN(G)
4 // Create a l i s t o f a l l s t r ong l y connected components
5 strong_components = empty l i s t
6 f o r each strong_component in DAG
7 strong_components . add ( strong_components )
8 // Sort the l i s t based on EDVIN_ESTIMATE
9 sort_descending ( strong_components )

10 re turn (DAG, strong_components )

3.6.2 The search step
Once the strongly connected components are found, we perform a search for a win-
ning strategy for each of these components. The search utilises a method SOLVE
which returns a winning strategy with k pursuers for the graph G or "FAILURE"
if no such strategy exists. A binary search will find the search number according to
SEARCH in O(log |V |) steps. A linear search from the lower bound l to the upper
bound u uses at most |V (G)| steps, but stops directly after SOLVE has returned a
winning strategy. Both a binary search and a linear search can be tweaked in many
different ways. A binary search could, for example, be made between l and Edvin’s
estimate e. If no winning strategy could be found, a binary search between e and u
is executed. The sample below uses a linear strategy from l to u.
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1 SEARCH_STEP(G, lower , upper )
2 // indeg ree [ i ] should conta in indeg ree f o r ver tex i
3 i ndeg ree = G. get_indegree
4 f o r k=lower to upper
5 s t r a t e gy = SOLVE(G, k , k , copy ( indeg ree ) , copy ( indeg ree ) , new

array , 0)
6 i f ( s t r a t e gy != "FAILURE" )
7 re turn s t r a t e gy

SOLVE calculates the next state in a recursive manner until a winning strategy
has been found or the maximum stack depth (MAX_DEPTH ) has been exceeded.
A state consists of an array with the number of free edges for each vertex. A free
edge is an incoming edge which is not blocked. That means, the number of free edges
for a vertex v, is the number of edges u→ v such that u is not decontaminated. If
the number of free edges for v is zero, v is considered decontaminated. A winning
strategy is found when there are no free edges in G left.

Upon invocation, SOLVE checks whether the current state has been visited (row
17). This check should not be performed in an intermediary step, but only after all k
pursuers have been placed. A state is considered visited if the set of decontaminated
vertices has been encountered in any previous state. If the state is converted into
a bitvector b with a zero on position p if currentState[p] = 0 and one otherwise, it
would be possible to store the visited states in an array with bits where visited[b] = 1
if state b is visited. However, since the number of states grows exponentially with
the number of vertices in G, this approach would not work if G is large. Another
approach would be to use a large bloom filter. A bloom filter has O(1) lookup and
insertion with a small risk of a false positive (a state is considered visited although
it is not).

If the state is not visited and the step is not intermediary, we check if a winning
strategy is reachable from the current state. This is done by counting the number of
contaminated vertices. If this number is less than or equal to k, we have a winning
strategy by positioning pursuers at the contaminated vertices The strategy which
lead to the winning state is collected bottom-up using backtracking (row 20-24).

If the state is neither visited nor winning, then we should check stack depth
(length of current strategy). If the stack depth exceeds MAX_DEPTH, then we
must admit failure and backtrack (row 26-27). If we fail to do so, we will end
up exhausting the stack depth and the program will crash. This will happen even
for small graphs since the length of the strategy also grows exponentially with the
number of vertices in G. The length of an optimal strategy is usually between |V (G)|
to 2 ∗ |V (G)|, and we suggest MAX_DEPTH to be set to a value in this interval.

A pursuer is positioned at the next available vertex v given by the selector (row
35), whereby the current and next state is updated. The current state is updated by
setting currentState[v] = 0 (row 42) and the next state is updated by decrementing
the number of free edges for each neighbour to v to by one (row 43-44). If SOLVE has
positioned k pursuers, it is the monk’s turn to move. When this happens, the current
state becomes the next state (row 57), and the next state is recalculated according
to the following principle: each vertex v should have its number of free edges set to
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its indegree reduced by the number of edges u → v where u is decontaminated in
the current state (row 59-76).

The method SELECT (row 29) is implemented by the selector, see 3.6.5.

Here follows an example of how such an algorithm can be implemented. Psuedocode
for Edvin’s estimate is available in section 22.

1 /∗
2 G −− a s t r ong l y connected component to decontaminate
3 s ta t i c_pur sue r s −− The number o f pursuer s used in t h i s s t r a t e gy
4 dyn_pursuers −− The number o f pursuer s l e f t to p lace
5 current_state −− The cur rent s t a t e in t h i s s t r a t e gy
6 next_state −− The next s t a t e in t h i s s t r a t e gy
7 v e r t i c e s −− The v e r t i c e s decontaminated by pursuer s at each day
8 depth −− Length o f t h i s s t r a t e gy
9 ∗/

10 SOLVE(G, s tat i c_pursuer s , dyn_pursuers , current_state , next_state ,
v e r t i c e s , depth ) {

11 // Set f l a g "new_day" i f t h i s s tep i s the f i r s t inte rmed iary s tep
12 new_day = ( s ta t i c_pur sue r s = dyn_pursuers )
13 // Set f l a g " las t_pursuer " i f t h i s s tep i s the l a s t inte rmed iary

s tep
14 l a s t_pursuer = ( dyn_pursuers = 1)
15
16 i f new_day
17 i f cu r r en tS ta t e i s v i s i t e d
18 re turn "FAILURE"
19 mark cur r en tS ta t e as v i s i t e d
20 i f number o f contaminated v e r t i c e s <= s t a t i cPu r su e r s
21 winning_strategy := empty s t r a t e gy
22 // Add v e r t i c e s to decontaimate at day "depth"
23 winning_strategy . add ( contaminated v e r t i c e s )
24 re turn s t r a t e gy
25
26 i f depth > MAX_DEPTH
27 re turn "FAILURE"
28
29 vert ices_to_decontaminate = SELECT(G, current_state , next_state ,

s ta t i c_pursuer s , dyn_pursuers )
30
31 f o r each ver tex in vert ices_to_decontaminate
32 i f ve r tex i s decontaminated
33 sk ip
34
35 v e r t i c e s . add ( ver tex )
36
37 // Block edges o r i g i n a t i n g from the cur rent ver tex
38 new_current_state = copy ( current_state )
39 new_next_state = copy ( next_state )
40
41 // Decontaminate ver tex
42 new_currrent_state [ ve r tex ] = 0
43 f o r each neighbour to ver tex

32



3.6. A HEURISTIC APPROACH

44 new_next_state [ neighbour ] = new_next_state [ neighbour ]−1
45
46 i f l a s t_pursuer
47 f o r each ver tex in G
48 new_next_state [ ver tex ] = indegree f o r ver tex
49 f o r each decontaminated ver tex v in new_current_state
50 f o r each neighbour to v
51 new_next_state [ neighbour ] = new_next_state [

neighbour ]−1
52
53 s t r a t e gy = SOLVE(
54 G,
55 s ta t i c_pursuer s ,
56 i f l a s t_pursuer then s ta t i c_pur sue r s e l s e dyn_pursuers−1,
57 i f l a s t_pursuer then new_next_state e l s e new_current_state ,
58 i f l a s t_pursuer then TRANSITION(G, new_next_state ) e l s e

new_next_state ,
59 i f l a s t_pursuer then new array e l s e v e r t i c e s ,
60 i f l a s t_pursuer then depth + 1 e l s e depth
61 )
62 i f s t r a t e gy != "FAILURE"
63 i f l a s t_pursuer
64 s t r a t e gy . add ( v e r t i c e s )
65 re turn s t r a t e gy
66
67 re turn "FAILURE"
68
69 TRANSITION(G, s t a t e )
70 next_state = copy ( s t a t e )
71 f o r each ver tex in G
72 next_state [ ver tex ] = indegree f o r ver tex
73 f o r each decontaminated ver tex v in s t a t e
74 f o r each neighbour to v
75 next_state [ neighbour ] = next_state [ neighbour ]−1
76 re turn next_state

3.6.3 The merge step
The solutions should be merged in the order defined by the DAG of strongly con-
nected components. This DAG can be built while searching for strongly connected
components or in a separate step.

1 /∗
2 DAG −− a d i r e c t ed a c y c l i c graph o f s t r ong l y connected components
3 stable_components −− the s t r ong l y connected components in the DAG
4 s t r a t e g i e s −− the s t r a t e gy f o r each o f the s t ab l e components ,

should appear in the same order as in stable_components
5 ∗/
6 MERGE_STEP(DAG, stable_components , s t r a t e g i e s )
7 s t r a t e gy = empty l i s t
8 f o r each strong_component o f DAG in t o p l o g i c a l order
9 s t r a t e gy . add ( s t r a t e g i e s [ strong_component ] )

10 re turn s t r a t e gy
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3.6.4 Putting it all together

1 /∗
2 Find a s t r a t e gy to decontaminate the graph G with a few
3 pursuers as p o s s i b l e .
4 ∗/
5 SOLVE(G)
6 (DAG, strong_components ) = PARTITION_STEP(G)
7 s t r a t e g i e s = empty l i s t
8 // The maximum pursuers needed f o r so lved components ,
9 // approximately the search number .

10 i n t search_num_approx = 0
11 f o r each strong_component in strong_components in order
12 lowerBound = lowerBound (G)
13 upperBound = upperBound (G)
14 s t r a t e gy = SEARCH_STEP(
15 G,
16 max( lowerBound , search_num_approx ) ,
17 upperBound
18 )
19 search_num_approx = max( search_num_approx , pursuer s ( s t r a t e gy ) )
20 s t r a t e g i e s . add ( s t r a t e gy )
21 re turn MERGE_STEP(DAG, stable_components , s t r a t e g i e s )

Before invoking the SEARCH_STEP, one could check if there exists a trivial
solution (theorem 13). This is done by computing the intersection of the vertex sets
for all elementary circuits.

3.6.5 The selector
The selector implements a method SELECT which takes a strongly connected com-
ponent, the current and the next state, the number of pursuers used in the strategy,
and the number of pursuers left to place. The method returns a list of vertices to de-
contaminate in the next state. The vertex to be decontaminated first should appear
in the beginning of the list. If the selector returns more than one vertex, SEARCH
will create branches, where each branch is inspected separately. If one branch does
not yield a solution, the next branch will be tried. If the selector returns a list of all
vertices, the search step becomes a brute-force search. Our implementation returns
a single vertex based on figure 3.7.

34



Chapter 4

Discussion

It is still unknown whether there exist a polynomial time algorithm for finding an
optimal strategy for the monk problem. If such an algorithm exists, it would imply
that both MSNDP and MSLDP belong to P . If it is possible to bound the length
of optimal solutions by a polynomial expression, then MSNDP and MSLDP are in
NP because the implementation of EL-systems would run in polynomial time. An
implication of conjecture 6 would be, that there exists a polynomial time reduction
of a graph G in such a way that the search number for G becomes equal to the size
of the maximum clique in G.

Open problem 1. What is the relation between the search number and the size of
the maximum clique in a monk graph?

Regarding the cycle decomposition, it might not be feasible for practical appli-
cations. Even though finding all cycles in a graph can be done effectively by depth
first traversal using Johnson’s algorithm running in O((n + e)(c + 1)) where n is
the number of vertices, e is the number of edges, and c is the number of elementary
circuits [10], since the number of cycles can grow exponentially with |G| it might
not be practical to do cycle decomposition if G is large or dense.

An interesting property of the strategies we have found so far, is that the number
of decontaminated vertices never decrease. Thus, we propose the following conjec-
ture:

Conjecture 14. Denote the number of decontaminated vertices in a monk graph G
on day t with D(Gt). For any optimal strategy of length n+1 to the monk problem,
it holds that D(Gi) ≤ D(Gi+1), 0 ≤ i ≤ n.

Since the monk problem can be seen a search game, it would be possible to
implement the search step using the minimax algorithm with alpha-beta pruning.
The number of decontaminated vertices could be used as analysis function. Such
heuristics would be slower due to the number of branches which has to be inspected,
opposed to the greedy selector where only one branch is followed.
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The length of the optimal strategies l for the graphs solved was about |V (G)| ≤
l ≤ 2 ∗ |V (G)|. No graph is known where the optimal strategy exceeds 2 ∗ |V (G)|.
Increasing the number of pursuers decreased the length of the solution and the time
it took to find it. Although we set an upper limit on 2 ∗ |V (G)| in our heuristics to
decrease the running time of the algorithm, we do not believe that the length of the
optimal strategy is bounded by this constant. The question we ask is, what is the
relation between the length of a solution and the number of pursuers?

Open problem 2. What is the relation between the length and the number of pur-
suers in a winning strategy?

We have noticed that the strategy produced with stable reduction (see lemma
10) is not necessarily optimal assuming all strategies of the stable components are
optimal. We have considered a reduction of a monk graph G to G′ which will
implicitly cause the stable components to be solved in order, but a greedy algorithm
could still focus on an optimal strategy for G′. This reduction works as follows:

1. Let G′ = G.

2. Create a DAG D from the strongly connected components of G. Let V (d)
denote the vertices in the strongly connected component d.

3. If u → v ∈ E(D), then all edges from V (u) will have edges to all vertices in
V (v) in G′.

However, the reduction may affect performance negatively since an algorithm would
have to focus on the whole graph with added edges, and not parts of it. We believe
that the divide and conquer approach is more suitable for large graphs, but the
reduction approach is better for small graphs consisting of many stable components.
This could be investigated in future research.
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Conclusion

An EL-system can be used as a verifier for MSNDP and MSLDP. Two implementa-
tions of an EL-system production process have been discussed, one using matrices
and one operating on bitvectors.

The strongly connected components of a graph G can be decontaminated in
sequence to form a winning strategy, and the search number is equal to the maximum
search number of the strongly connected components in G.

Bounds for the monk problem have been established based on cycle decomposi-
tion, indegree and size of the maximum cliques. A polynomial heuristic approach
have been proposed for finding near-optimal strategies.
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