
FIT5124 Advanced Topics in Security

Lecture 4: Lattice-Based Crypto. IV

Ron Steinfeld
Clayton School of IT

Monash University

March 2016

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 1/33

Plan for this lecture

How to construct lattice-based encryption schemes?
(continued)

Security of LWE: How to choose parameters for a given
security level?

Efficiency Considerations: How to make lattice-based crypto.
practical

Multibit encryption: Reducing ciphertext expansion

Structured Lattices (Ring-LWE): Reducing key length and
computation time

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 2/33

Security of Learning with Errors (LWE) Problem

Why do we believe LWE is hard?
Theoretical Reason: Analogue of Ajtai’s average-case to
worst-case connection Theorem for SIS can also be established for
LWE (Regev 2005 [Reg05]):

Theorem
If there is an algorithm A that solves Decision-LWEq(n),m(n),n,α(n) in poly-time, with non-negligible distinguishing

advantage, for α(n) · q(n) > 2
√

n

Then there is a quantum algorithm B that solves γ(n)-GapSVP in polynomial time for all input lattices L of
dimension n with:

γ = Õ(n/α).

γ(n)-GapSVP is a decision variant of γ(n)-SVP that asks, given a basis B for an n-dim. lattice L and an
integer d , to decide whether λ1(L) ≤ d , or λ1(L) > γ(n) · d .

More recent improvements to this result allow B to be a classical algorithm if either q > 2n/2 [Pei09], or
the dimension of the lattice input to B is

√
n [B13].

We won’t study this proof, but it gives us a theoretical foundation for security of LWE.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 3/33

Learning with Errors (LWE) Problem - Practical Security
Why do we believe LWE is hard?
Practical Reason: In most cases, essentially best known attack on
Decision LWE is a reduction of LWE to SIS.
Given an LWE instance (A ∈ Zm×n

q , ~y ∈ Zm
q):

Find a short non-zero vector ~v in SIS lattice L⊥q (AT) with

‖~v‖ ≤ β (i.e. solve β-SIS for AT).
Note that AT · ~v = ~0 mod q, or ~v T · A = ~0T mod q.

Compute e ′ = ~v T · ~y mod q.
In ‘Real LWE Scenario’ (~y = A ·~s +~e): e′ = ~vT ·~e mod q. Since ~e and ~v are both ‘small’, so is
e′: for fixed ~v , e′ is normally distributed with std. dev. ‖~v‖ · αq, so is ‘small’ if ~v · αq << q, or

β = ‖~v‖ << 1/α.

In ‘Random LWE Scenario’ (~y uniform in Zm
q): e′ = ~vT ·~e mod q is uniformly random in Zq , not

likely to be ‘small’ compared to q

If |e ′| < q/4, Return ‘REAL LWE’, else return ‘Random LWE’.

Conclusion: Solving Decision LWEq,m,n,α reduces to solving
SISq,m,n,β≈1/α. Choose parameters so that SISq,m,n,β≈1/α is hard!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 4/33

Learning with Errors (LWE) Problem - Practical Security
The condition αq > 2

√
n from Regev’s security reduction is

important to security (in general)!

LWE insecure when αq ≈ 1 and m is sufficiently large
(≥ m2)!!

Idea: Algebraic attacks!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 5/33

Efficiency Considerations in Lattice-Based Crypto.

Recall Regev’s public-key encryption scheme [Reg05]:
Public key pk = (A←↩ U(Zm×n

q , ~p = A ·~s + ~e mod q) with
~e ←↩ χm

αq.
Length(pk): = m · (n + 1) log q ≥ n2 log q bits — at least
quadratic in sec. par λ: O(λ2)!!

Secret key ~s ∈ Zn
q.

Encryption – Enc (m ∈ Zt): Return ciphertext
C = (~aT = ~r T · A mod q, c = ~r T · ~p + dq/tc ·m mod q).

Ciphertext expansion ratio: = Length(C)

Length(m)
= (n+1)·log q

log t – at

least linear in sec. par. λ: n + 1 = O(λ)!!.
Encryption time: O(mn log q) bit ops. – at least quadratic in
λ: O(λ2)!!

Decryption – Dec (C = (~aT , c)): Compute
c ′ = c −~aT ·~s mod q, round to nearest multiple of dq/tc
mod q to get c ′′. Return plaintext m =

~c ′′

dq/tc .

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 6/33

Efficiency Considerations: Ciphertext Expansion

Reducing ciphertext expansion ratio in Regev encryption
Observe: The ~aT component of ciphertext encodes only enc.
randomness, not message bits.
Idea ([PVW08]): ‘Reuse’ this randomness with new secrets ~si :
Modified Regev Scheme (` = number of secret key vectors):

Public key pk = (A←↩ U(Zm×n
q , P = (~p1, . . . ,~p`) where ~pi = A ·~si +~ei mod q) with ~ei ←↩ χm

αq .

Length(pk): = m · (n + `) · log q – ≈ (1 + `/n)-times larger than orig. scheme (` = 1).

Secret key S = (~s1, . . . ,~s`) ∈ Zn×`
q – ` times longer but not in practical storage!

Encryption – Enc (~m ∈ Z`t): Return ciphertext

C = (~aT = ~rT · A mod q,~cT = ~rT · P + dq/tc · ~m mod q).

Ciphertext expansion ratio:
Length(C)
Length(~m)

=
(n+`)·log q
` log t

= (1 + n
`

) · log q
log t

If q = tO(1), expansion ratio = O(1) for ` ≥ n!

Encryption time: O(m(n + `) log q) bit ops – ≈ (1 + `/n)-times larger than orig. scheme (` = 1).

Decryption – Dec (C = (~aT ,~cT)): Compute (~c′)T = ~cT −~aT · S mod q, round to nearest multiple of

dq/tc mod q to get c′′. Return plaintext ~m =
~c′′
dq/tc .

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 7/33

Efficiency Considerations: Ciphertext Expansion

Q: But, why is reusing ~aT still as secure as LWE?
A: Security reduction from LWE – example of ‘hybrid argument’.
Suppose there was an efficient IND-CPA attack algorithm B,
breaking 2λ security of Regev’s encryption scheme:

B runs in time TB and wins IND-CPA game with prob. 1/2 + εB (with TB < 2λ and non-neg.

εB > 1/2λ).

Then, we construct ` Dec-LWE algorithms, D1, . . . ,D` such that

at least one Di advantage ≥ εB−1/2λ+1

` ≥ 1/2λ+1+log `.
Given Dec-LWE instance (q, n,A, ~y), Di does following:

Di runs attacker B on input public key (A, P = (~p1, . . . ,~p`)), where
For j = 1, . . . , i − 1, Di sets ~pj = A ·~sj +~ej mod q, where ~sj ←↩ U(Zn

q) and ~ej ←↩ χm
αq are

sampled independently by Di .
For j = i , Di sets ~pi = ~y .

For j = i + 1, . . . , `, Di samples independent ~pi ←↩ U(Zm
q).

When B makes its challenge query (~m0, ~m1), Di behaves like the real challenger: chooses a random bit b,
picks coefficient vector ~r ←↩ U({−Br , . . . , Br}m) and computes:

~aT = ~rT · A,~cT = ~rT · P + dq/tc · ~mb mod q.

Di returns challenge ciphertext (~aT , c).
When B returns a guess b′ for b, D returns ‘Real’ if b′ = b, and ‘Rand’ if b′ 6= b.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 8/33

Efficiency Considerations: Ciphertext Expansion
‘Reusing’ ~aT security reduction (cont.): Consider two LWE
scenarios for ~y as input to Di :

‘Real’ LWE scenario, ~pi = ~y = A ·~s +~e mod q – first i vectors ~p1, . . . ,~pi in public key are computed

exactly as in the real IND-CPA game, remaining `− i vectors ~pi+1, . . . ,~p` are random.

Call this distribution of P (first i ~pj ’s ‘real’, last `− i ~pj ’s ‘random’) the ith ‘hybrid’ distribution.
Define the winning probability of B for ith ‘hybrid’ distribution of P as pi = 1/2 + εi , hence Di
returns ‘Real’ with prob. 1/2 + εi .

Note two extreme values of pj are known:

p0 ≤ 1/2 + 1/2λ+1 (all ~pj ’s uniformly random) by LHL argument (as before), except the

LHL condition becomes (2Br + 1)m >> qn+`.

p` = 1/2 + εB (all ~pj ’s as in real IND-CPA game) by assumption on B.

‘Random’ LWE scenario, ~pi = ~y ←↩ U(Zm
q) – first i − 1 vectors ~p1, . . . ,~pi−1 in public key are computed

exactly as in the real IND-CPA game, remaining `− i + 1 vectors ~pi , . . . ,~p` are random.

This is the (i − 1)’th hybrid distribution of P.

So: Distinguishing advantage of Di is ∆i = |pi − pi−1|.
Since p` − p0 ≥ εB − 1/2λ, one of ` ∆i ’s (say i = i∗) must be ≥ (εB − 1/2λ)/` ≥ 1/(` · 2λ+1).

Conclusion: Di∗ contradicts the 2λ+1+log `-security of LWE!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 9/33

Reducing Storage and Computation: Structured Lattices

How to reduce quadratic stored key length of matrix A?
Recall A is a random m × n matrix with m ≥ n – number of
elements m · n ≥ n2:

A =

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

...
...

. . .
...

am,1 am,2 · · · am,n

Idea: Reuse some ai ,j ’s in matrix, only store them once!

Structured matrices / lattices!

But, how to do it securely?

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 10/33

Reducing Storage and Computation: Structured Lattices

Idea: [HPS96,M02] Replace m × n random matrix A (entropy

Õ(n2)) with m/n blocks of n × n negacyclic square matrices

(entropy Õ(n)): Use n × n negacyclic ‘rot’ matrices. For an n-dim.
vector ~a ∈ Zn, define

rot(~a) =

a0 −an−1 −an−2 · · · −a1

a1 a0 −an−1 · · · −a2

a2 a1 a0 · · · −a3

...
...

... · · ·
...

an−1 an−2 an−3 · · · a0

to build

A =

rot(~a1)
rot(~a2)

...
rot(~am/n)

 .
Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 11/33

Correspondence with Polynomial Ring Rq = Zq[x]/(xn + 1)

rot matrix-vector product ≡ Polynomial Mult. mod xn + 1: A
polynomial a(x) = a0 + a1 · x . . .+ an−1 · xn−1 with ai ∈ Zq can be

represented by its coefficient vector
−−→
a(x):

−−→
a(x)T = [a0, a1, . . . , an−1] ∈ Zn

q.

For two polynomials a(x), s(x) ∈ Zq[x] of deg. < n − 1, let
c(x) = a(x) · s(x) mod xn + 1.

c(x) =
∑

i<n si x
i a(x) mod xn + 1.

x · (a0 + a1x + a2x2 · · · an−1xn−1) mod xn + 1 =
−an−1 + a0x + a1x2 + · · ·+ an−2xn−1.

Hence can write c(x) as vector-matrix product
−→c = rot(

−−→
a(x)) ·

−−→
s(x) mod q:

c0
c1

.

.

.
cn−1

 =

a0 −an−1 −an−2 · · · −a1
a1 a0 −an−1 · · · −a2
a2 a1 a0 · · · −a3

.

.

.

.

.

.

.

.

. · · ·
.
.
.

an−1 an−2 an−3 · · · a0

 ·

s0
s1

.

.

.
sn−1

 .

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 12/33

Correspondence with Polynomial Ring Rq = Zq[x]/(xn + 1)

Set of polynomials {a(x) = a0 + a1 · x . . .+ an−1 · xn−1 : ai ∈ Zq}
of degree < n with Zq coefficients forms a polynomial ring
Rq = Zq[x]/(xn + 1) under the operations

polynomial addition modulo xn + 1 – corresponds to addition
of coefficient vectors:

−−−−−−−−−−−−−−−−−→
a(x) + b(x) mod xn + 1 =

−−→
a(x) +

−−→
b(x).

polynomial multiplication modulo xn + 1 – corresponds to
(rot-matrix) times (coefficient vector) product:

−−−−−−−−−−−−−−−−→
a(x) · b(x) mod xn + 1 = (rot

−−→
a(x)) ·

−−→
b(x).

with the operations on the coefficients performed in Zq (i.e.
modulo q). (When working in Rq, we won’t write modxn + 1
(understood)).
Sometimes, also refer to ring R = Z[x]/(xn + 1): same as Rq

except coefficients arithmetic is in Z (not mod q).
Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 13/33

Reducing Computation: FFT

Q: How does correspondence to polynomial multiplication help?
A: Use fast polynomial multiplication algorithms to speed up
rot(~a) ·~s computation!

Use O(m/n · n log n) add./mult. ops. over Zq instead of O(m/n · n2)!

Idea: Reduce to (Number Theory) Fast Fourier Transform
(FFT) computations For a(x), s(x) ∈ Zq[x], to compute
c(x) = a(x) · s(x) mod xn + 1, (deg. of a(x), s(x) < n):

Choose q such that 2n divides q − 1.

Then xn + 1 has n zeros in Zq of the form ζ2i+1 for i = 0, . . . , n − 1, where ζ ∈ Zq is a

primitive 2nth root of 1 in Zq .

Evaluate a(x) and b(x) at the n points ζ2i+1 in Zq to compute the evaluation vectors:

(a(ζ), . . . , a(ζ2n−1)) and (s(ζ), . . . , s(ζ2n−1)). Corresponds to multiplication by an FFT-like matrix.
(takes O(n log n) mult./add. over Zq).

Multiply the evaluations at each point: c(ζ2i+1) = a(ζ2i+1) · s(ζ2i+1) for i = 0, . . . , n − 1.

Interpolate to reconstruct (a(ζ), . . . , a(ζ2n−1)) to reconstruct c(x). Corresponds to multiplication by an

FFT-like matrix. (takes O(n log n) mult./add. over Zq).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 14/33

Efficiency Considerations in Lattice-Based Crypto.
Ring Variant of Regev’s public-key encryption scheme over ring
Rq = Zq[x]/(xn + 1) (m′ = m/n for ‘orig.’ m, ` = n):

Public key pk = (A←↩ U(Rm′×1
q), ~p = A · s + ~e mod q) with

~e = [e1, . . . , em′]
T and coefficients of ei sampled

independently from χαq.

Length(pk): = m′ · 2n log q = O(n log2 q) = O(λ log2 λ) bits
— ‘quasi-linear’ in sec. par λ!

Secret key s ∈ Rq.

Encryption – Enc (m ∈ Rt): Return ciphertext
C = (a = ~r T · A ∈ Rq, c = ~r T · ~p + dq/tc ·m mod q ∈ Rq).

Ciphertext expansion ratio: =
Length(C)
Length(m)

= 2n·log q
n log t

= 2·log q
log t

= O(log λ)!

Encryption time: With FFT, O(m′n log n · log2 q) = O(λ log3 λ) bit ops. – ‘quasi-linear’ !

Decryption – Dec (C = (a, c)): Compute c ′ = c − a · s ∈ Rq,
round to nearest multiple of dq/tc mod q to get c ′′ ∈ Rq.

Return plaintext m =
~c ′′

dq/tc ∈ Rt .

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 15/33

Efficiency Considerations in Lattice-Based Crypto.
Poly. ring naturally can improve other lattice crypto. schemes:

Definition

Ring variant of Ajtai’s Hash Function gq,m′,n,d ,A: Pick
A = (a1, . . . , am′) uniformly random 1×m′ matrix over Rq (A =
function ‘public key’). Given input ~x ∈ Rm′ having ‘small’
coordinates (‖~x‖∞ ≤ d), hash function output is defined as

gq,m,n,d ,A(~x) = A · ~x = a1 · x1 + · · · am′ · xm′ ∈ Rq.

Security: Ring-SIS problem (see next slides). Efficiency: O(n log n)
key (A), O(n log2 n) multiplications mod q.
Example implementation: SWIFFT hash function
[LMPR08,ADLMPR08]

Parameters: n = 64,m = 16, q = 257, compression function
input (binary): 1024-bit, output: ≈ 512-bit
Key length: ≈ 8 kbit
Eval. Speed (optimized FFT, SIMD): ≈ 60 cycles/byte (≈ 40
MB/s on 3 GHz CPU)Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 16/33

Security of Ring Learning with Errors (Ring-LWE) Problem

Problem

Decision Ring Learning with Errors (Decision-RLWE)
Problem – Decision − RLWEq,m,n,α:
Given q,m, n, α,A←↩ U(Rm′×n

q), ~y, distinguish between the
following two scenarios:

‘Real’ Scenario: ~y = A ·~s + ~e mod q (with ~e ←↩ χm′
αq and

~s ←↩ U(Zn
q)) (exactly as in search LWE).

‘Random’ Scenario: ~y ←↩ U(Zm
q).

Note chiαq is a rounded Gaussian distribution as in LWE definition.
Why do we believe Ring-LWE/Ring-SIS are hard? Similar situation
to SIS/LWE, but less certain...
Theoretical Reason: Analogue of Regev’s average-case to
worst-case reduction for LWE can also be established for
Ring-SIS/Ring-LWE (Lyubashevsky Peikert Regev 2010 [LPR10]):

Theorem
For the ring R = Z[x]/(xn + 1) with n a power of 2, and q = Poly(n) prime with q − 1 divisible by 2n,fix ε > 0
and 0 < α < 1, and m′ = O(1). If there is an algorithm A that solves Decision-RLWEq(n),m′(n),n,α(n) in

poly-time, with non-negligible distinguishing advantage, for α(n) · q(n) > n1.25+ε

Then there is a quantum algorithm B that solves γ(n)-SVP in polynomial time for all R-ideal lattices L of
dimension n with:

γ = Õ(n1.75+ε
/α).

Worst-case γ-SVP guarantee not with respect to all arbitrary lattices but all structured R-ideal lattices -
an R-ideal lattice consists of a subset of R (called an ideal of R), that is closed under addition, and by
multiplication by all elements of R.
Hardness of γ-SVP restricted to R-ideal lattices (γ-IdealSVP) is not as well studied as unrestricted γ-SVP,
but seems hard. No better algorithms for γ-IdealSVP in general ideals known than the ones for arbitary
lattices. (But, in 2014-2015 improved algorithms discovered for special ideals called principal ideals).
Restriction m′ = O(1) can be relaxed [LPR10] with more complex noise distributions and larger γ.

Choice of ring R can be relaxed but can have critical affect on security! (e.g.: next week’s tutorial).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 17/33

Ring Learning with Errors (RLWE) Problem - Practical
Security

Analogously to LWE, we also have:
Practical Reason: In most cases, essentially best known attack on
Decision RLWE is a reduction of RLWE to RSIS. Hardness of RSIS
for same R is assessed similarly to SIS!

Problem

Ring Small Integer Solution (RSIS) Problem – RSISq,m′,n,β:
Given n and a matrix A sampled uniformly in R1×m′

q ,

find ~z ∈ Rm′ \ {~0} such that A~v = ~0 mod q and ‖~v‖ ≤ β.

Worst-case to average case connection for RSIS for ring R is
known, analogously to Ajtai’s theorem.

The choice of ring R is important for security and efficiency
(usually our usual choice of R suffices).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 18/33

Efficiency Considerations in Lattice-Based Crypto.
Ring-Regev encryption scheme has:

2m′ ring elements in public key: (A, ~p) ∈ Rm′×2
q .

2 ring elements in ciphertext (a, c) ∈ R2
q .

How to reduce public key and/or ciphertext to just 2 or even 1 ring
elements?
Two schemes:

‘Diffie-Hellman/ElGamal’ analogue of Ring-Regev [LPR10]

Public key and ciphertext: 2 elements of Rq each
Security: as hard as Ring-LWE [LPR10]

NTRUEncrypt [HPS96]

Public key and ciphertext: 1 element of Rq each
Security:

’NTRU key-cracking’ + Ring-LWE – original variant [HPS96],
or
Ring-LWE, longer n, q – Modified variant [SS11]

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 19/33

Efficiency Considerations in Lattice-Based Crypto.
Ring-based ‘Diffie-Hellman/ElGamal’ analogue Encryption Scheme
[LPR10,LP11]:
Recall Diffie-Hellman/ElGamal encryption scheme in a group G of
order q with generator g :
Public key: (g , pb = g b) ∈ G 2, Secret key: b ←↩ U(Rq).
Encryption(m ∈ G ; a←↩ U(Rq)):
(pa = g a ∈ G , c = pa

b ·m = g a·b ·m ∈ G).
Decryption((pa, c) ∈ G 2): c/pb

a = c/g a·b = m.
Ring-based Diffie-Hellman analogue in Rq:
Public key: (g ←↩ U(Rq), pb = g · b + eb ∈ G , b, eb ←↩ χαq),
Secret key: b ∈ Rq.
Encryption(m ∈ Rt ; a, ea, ec ←↩ χαq):
(pa = g · a + ea ∈ Rq, c = pb · a + ec + dq/tc ·m ∈ Rq).

Note: c = g · b · a + ec · a + dq/tc ·m ∈ Rq).

Decryption((pa, c) ∈ G 2):
c−pa ·b = c−(g ·a ·b+ea ·b) = dq/tc·m+ec ·a+ea ·b ≈ dq/tc·m.
Round and divide by dq/tc.Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 20/33

Efficiency Considerations in Lattice-Based Crypto.
Security of Ring-based Diffie-Hellman analogue scheme based on
variant of Ring-LWE with small secret.
Ring-LWE with secret sampled from error distribution
(SSRing-LWE): Same as Ring-LWE, but secret s ←↩ χαq instead
of s ←↩ U(Rq).
Lemma. Ring-LWE with parameters m′, n, α, q and secret sampled
from the error distribution (i.e. SSRing-LWE) is as hard as
standard Ring-LWE with parameters m′ + 1, n, α, q. (next week’s
tute!).
Simple security reduction for Diffie-Hellman encryption scheme
from SSRing-LWE can be given. (tutorial).
Lemma. The Diffie-Hellman encryption scheme is as secure as
Ring-LWE with parameters m′ = 2, n, α, q.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 21/33

NTRU Cryptosystem (original variant [HPS96]): Key
Generation

Ring Parameters: n prime, q ≈ n a power of 2, p small, ring
R− = Z[x]/(xn − 1).
(e.g. (n, q, p) = (503, 256, 3)).

Secret key sk : f , g ∈ R− sampled indep. from distrib. χσ
with:

f is invertible mod q and mod p
The coeffs of f and g are small

Supp(χσ) = {−1, 0, 1}n.

Public key pk: h = g/f mod q.

NTRU key cracking Security intuition

Given h ∈ R−q , finding g , f ∈ R− small s.t. h = g/f [q] is hard.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 22/33

NTRU Cryptosystem (original variant [HPS96]): Key
Generation

Ring Parameters: n prime, q ≈ n a power of 2, p small, ring
R− = Z[x]/(xn − 1).
(e.g. (n, q, p) = (503, 256, 3)).

Secret key sk : f , g ∈ R− sampled indep. from distrib. χσ
with:

f is invertible mod q and mod p
The coeffs of f and g are small

Supp(χσ) = {−1, 0, 1}n.

Public key pk: h = g/f mod q.

NTRU key cracking Security intuition

Given h ∈ R−q , finding g , f ∈ R− small s.t. h = g/f [q] is hard.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 22/33

NTRU Cryptosystem (original variant [HPS96]): Key
Generation

Ring Parameters: n prime, q ≈ n a power of 2, p small, ring
R− = Z[x]/(xn − 1).
(e.g. (n, q, p) = (503, 256, 3)).

Secret key sk : f , g ∈ R− sampled indep. from distrib. χσ
with:

f is invertible mod q and mod p
The coeffs of f and g are small

Supp(χσ) = {−1, 0, 1}n.

Public key pk: h = g/f mod q.

NTRU key cracking Security intuition

Given h ∈ R−q , finding g , f ∈ R− small s.t. h = g/f [q] is hard.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 22/33

NTRU Cryptosystem (original variant [HPS96]): Key
Generation

Ring Parameters: n prime, q ≈ n a power of 2, p small, ring
R− = Z[x]/(xn − 1).
(e.g. (n, q, p) = (503, 256, 3)).

Secret key sk : f , g ∈ R− sampled indep. from distrib. χσ
with:

f is invertible mod q and mod p
The coeffs of f and g are small

Supp(χσ) = {−1, 0, 1}n.

Public key pk: h = g/f mod q.

NTRU key cracking Security intuition

Given h ∈ R−q , finding g , f ∈ R− small s.t. h = g/f [q] is hard.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 22/33

NTRU Cryptosystem (original variant [HPS96]):
Encryption/Decryption

sk: f , g ∈ R− small with f invertible mod q and mod p
pk: h = g/f mod q

Encryption of M ∈ R with coeffs in {0, . . . , p − 1}:
Sample s ∈ R−q from distrib. χρ resp. with small coeffs –
Supp(χρ) = {−1, 0, 1}n.
Send C := phs + M mod q

Decryption of C ∈ R−q :

f × C = p(gs) + fM mod q
Smallness ⇒ equality holds over R−

(f × C mod q) mod p = fM mod p
Multiply by the inverse of f mod p

Security intuition

The mask phs hides the plaintext M in the ciphertext C .
Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 23/33

Security of NTRU: Computational/Statistical Problems

Essentially two ways to break the IND-CPA security of NTRU:

Crack the public key:

NTRU Decision Key Cracking Problem DNKCn,q,φ,χσ

Given (n, q, φ) and h, distinguish

NTRU key distribution D0 = {h = g/f ∈ Rq : f , g ←↩ χσ}.

Uniform key distribution D1 = {h←↩ U(R∗q)}.

Crack the ciphertext for a uniform key:

NTRU Decision Ciphertext Cracking Problem DNCCn,q,φ,χρ,χβ

Given (n, q, φ), h sampled from U(R∗q), and c, distinguish

NTRU zero-message ciphertext distribution
D0 = {c = phs : s ←↩ χρ, e ←↩ χβ}.

Uniform distribution D1 = {c ←↩ U(Rq)}.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 24/33

Security of NTRU: Computational/Statistical Problems

Essentially two ways to break the IND-CPA security of NTRU:

Crack the public key:

NTRU Decision Key Cracking Problem DNKCn,q,φ,χσ

Given (n, q, φ) and h, distinguish

NTRU key distribution D0 = {h = g/f ∈ Rq : f , g ←↩ χσ}.

Uniform key distribution D1 = {h←↩ U(R∗q)}.

Crack the ciphertext for a uniform key:

NTRU Decision Ciphertext Cracking Problem DNCCn,q,φ,χρ,χβ

Given (n, q, φ), h sampled from U(R∗q), and c, distinguish

NTRU zero-message ciphertext distribution
D0 = {c = phs : s ←↩ χρ, e ←↩ χβ}.

Uniform distribution D1 = {c ←↩ U(Rq)}.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 24/33

NTRU Cryptosystem: Security of original variant [HPS96]

Security aspects of original variant:

NTRU Decision Key Cracking problem:

Non-uniform distribution of h in R−q due to very small
coefficients of f , g
No known attacks, but also not related to well-known lattice
problems...

NTRU Decision Ciphertext Cracking problem:

Trivial distinguishing attack (no noise): Given h, c , can easily
distinguish if c = phs or c uniform in R−q !

Modified variant of NTRU given in [SS11] ‘fixes’ these two issues.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 25/33

NTRU Cryptosystem Original [HPS96] variant

Parameters: n, q a power of 2, R = R−.

Key generation:

sk: f , g ∈ R with:

f invertible mod q and p.
Coeffs of f and g in {−1, 0, 1}

pk: h = g/f mod q.

Encryption of M ∈ R with coeffs in {0, 1}:
C := phs + M mod q, with coeffs of s in {−1, 0, 1}.

Decryption of C ∈ Rq:

f × C mod q = pgs + fM (over R)

(f × C mod q) mod p = fM mod p.

Multiply by the inverse of f mod p.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 26/33

NTRU Cryptosystem (Modified variant [SS11])

Parameters: n a power of 2, q prime, R = R+.

Key generation:

sk: f , g ∈ R with:
f invertible mod q and p.
Coeffs of f and g of magnitude ≈ √q

pk: h = g/f mod q.

Encryption of M ∈ R with coeffs in {0, 1}:
C := p(hs + e) + M mod q, with coeffs of s, e of
magnitude ≈ β.

Decryption of C ∈ Rq:

f × C mod q = p(gs + fe) + fM (over R)

(f × C mod q) mod p = fM mod p.

Multiply by the inverse of f mod p.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 26/33

Security of NTRU: Computational/Statistical Problems

Essentially two ways to break the IND security of NTRU:

Crack the public key:

NTRU Decision Key Cracking Problem DNKCn,q,φ,χσ

Given (n, q, φ) and h, distinguish

NTRU key distribution D0 = {h = g/f ∈ Rq : f , g ←↩ χσ}.

Uniform key distribution D1 = {h←↩ U(R∗q)}.

Crack the ciphertext for a uniform key:

NTRU Decision Ciphertext Cracking Problem DNCCn,q,φ,χρ,χβ

Given (n, q, φ), h sampled from U(R∗q), and c, distinguish

NTRU ciphertext distribution
D0 = {c = phs + e : s ←↩ χρ, e ←↩ χβ}.

Uniform distribution D1 = {c ←↩ U(Rq)}.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 27/33

Security of NTRU: Computational/Statistical Problems

Essentially two ways to break the IND security of NTRU:

Crack the public key:

NTRU Decision Key Cracking Problem DNKCn,q,φ,χσ

Given (n, q, φ) and h, distinguish

NTRU key distribution D0 = {h = g/f ∈ Rq : f , g ←↩ χσ}.

Uniform key distribution D1 = {h←↩ U(R∗q)}.

Crack the ciphertext for a uniform key:

NTRU Decision Ciphertext Cracking Problem DNCCn,q,φ,χρ,χβ

Given (n, q, φ), h sampled from U(R∗q), and c, distinguish

NTRU ciphertext distribution
D0 = {c = phs + e : s ←↩ χρ, e ←↩ χβ}.

Uniform distribution D1 = {c ←↩ U(Rq)}.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 27/33

IND Security of NTRU: Sufficient Condition

Proposition (Adapted from [SS11])

If DNKC and DNCC are both hard, then NTRUcryptosystem
achieves semantic (IND) security.

Proof by contradiction – three ‘games’ with adversary A:

INDb – pk: h = g/f , ciph: cb = p · (hs + e) + mb,
pb = PrINDb

[A(h, cb) = 1].
IND’b – pk: h←↩ U(R∗q), ciph: cb = p · (hs + e) + mb,
p′b = PrIND’b [A(h, cb) = 1].

|p′b − pb| = non-neg(n) → A breaks DNKC.

IND”b – pk: h←↩ U(R∗q), ciph: cb = p · U(Rq) + mb,
p′′ = PrIND”b

[A(h, cb) = 1].
|p′′b − p′b| = non-neg(n) → A breaks DNCC.

Else, A can distinguish IND”0 from IND”1: contradiction –
p · U(Rq) term perfectly hides mb!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 28/33

How to make both DNKCand DNCCproblems provably hard?

[SS11] strategy to prove hardness of DNKC and DNCC problems:

Choose χσ for f , g to make DNKC statistically hard.
f , g ←↩ χσ → h = g/f almost uniformly distributed on R∗q .
Must work in statistical region: |Supp(χσ)| > |R∗q | → σ >

√
q.

(tradeoff: larger parameters than original scheme to avoid
additional ’NTRU key cracking assumption’).
Use a (modified) discrete Gaussian distribution χσ.
Tradeoff: Larger size of q, n versus original variant.

Choose χρ = χβ for s, e to make DNCC computationally hard.
Change rings: R−q = Zq[x]/(xn − 1)→ R+

q = Zq[x]/(xn + 1),

n = 2k .
h←↩ U(R∗q), s, e ←↩ χβ → (h, c = hs + e) computationaly
indist. from U(R∗q × Rq), if SSRing-LWE problem hard.
Use a rounded Gaussian distribution χβ .
Addition of error term: low-cost fix for IND-CPA security
(avoid known attack!).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 29/33

Estimated Parameters / Performance of NTRU (Orig.
variant)

Sample parameters / implementation figures for NTRU (orig.
variant) [HHPW09]:

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 30/33

Estimated Parameters / Performance of Ring
Diffie-Hellman analogue

Sample parameters / implementation figures for Diffie-Hellman
analogue scheme [LP11]:

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 31/33

References referred to in the Slides

Reg05 O. Regev. On Lattices, Learning with Errors, Random Linear Codes,
and Cryptography,Journal of the ACM 56(6), 2009.

Pei09 C. Peikert. Public-Key Cryptosystems from the Worst-Case Shortest
Vector Problem, In Proceedings of STOC 2009.

B13 Z. Brakerski, A. Langlois, C. Peikert, O. Regev, D. Stehl. Classical
Hardness of Learning with Errors, In Proceedings of STOC 2013.

PVW08 C. Peikert, V. Vaikuntanathan, B. Waters. A framework for efficient
and composable oblivious transfer, In Proceedings of CRYPTO
2008.

HPS96 J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: a ring based

public key cryptosystem. In Proceedings of ANTS-III, 1998.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 32/33

References referred to in the Slides (cont.)

M02 D. Micciancio. Generalized compact knapsacks, cyclic lattices, and
efficient one-way functions from worst-case complexity assumptions.
Computational Complexity, 16(4):365411, 2007.

LPR10 V. Lyubashevsky, C. Peikert, O. Regev. On Ideal Lattices and
Learning with Errors Over Rings. Journal of the ACM,
60(6):43:143:35, 2013.

SS11 D. Stehl and R. Steinfeld. Making NTRU as Secure as Worst-Case
Problems over Ideal Lattices. In Proceedings of EUROCRYPT 2011.

LP11 R. Lindner and C. Peikert. Better Key Sizes (and Attacks) for
LWE-Based Encryption. In Proceedings of CT-RSA 2011.

HHPW09 J. Hoffstein, N. Howgrave-Graham, J. Pipher and W. Whyte.

Practical lattice-based cryptography: NTRUEncrypt and

NTRUSign, 2009. Book Chapter in P. Q. Nguyen and B. Valle

(editors), The LLL Algorithm: Survey and Applications, Information

Security and Cryptography, Springer, 2009.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 33/33

