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Plan for this lecture

How to construct lattice-based encryption schemes?
(continued)

Security of LWE: How to choose parameters for a given
security level?

Efficiency Considerations: How to make lattice-based crypto.
practical

Multibit encryption: Reducing ciphertext expansion

Structured Lattices (Ring-LWE): Reducing key length and
computation time
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Security of Learning with Errors (LWE) Problem

Why do we believe LWE is hard?
Theoretical Reason: Analogue of Ajtai’s average-case to
worst-case connection Theorem for SIS can also be established for
LWE (Regev 2005 [Reg05]):

Theorem
If there is an algorithm A that solves Decision-LWEq(n),m(n),n,α(n) in poly-time, with non-negligible distinguishing

advantage, for α(n) · q(n) > 2
√

n

Then there is a quantum algorithm B that solves γ(n)-GapSVP in polynomial time for all input lattices L of
dimension n with:

γ = Õ(n/α).

γ(n)-GapSVP is a decision variant of γ(n)-SVP that asks, given a basis B for an n-dim. lattice L and an
integer d , to decide whether λ1(L) ≤ d , or λ1(L) > γ(n) · d .

More recent improvements to this result allow B to be a classical algorithm if either q > 2n/2 [Pei09], or
the dimension of the lattice input to B is

√
n [B13].

We won’t study this proof, but it gives us a theoretical foundation for security of LWE.
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Learning with Errors (LWE) Problem - Practical Security
Why do we believe LWE is hard?
Practical Reason: In most cases, essentially best known attack on
Decision LWE is a reduction of LWE to SIS.
Given an LWE instance (A ∈ Zm×n

q , ~y ∈ Zm
q ):

Find a short non-zero vector ~v in SIS lattice L⊥q (AT ) with

‖~v‖ ≤ β (i.e. solve β-SIS for AT ).
Note that AT · ~v = ~0 mod q, or ~v T · A = ~0T mod q.

Compute e ′ = ~v T · ~y mod q.
In ‘Real LWE Scenario’ (~y = A ·~s +~e): e′ = ~vT ·~e mod q. Since ~e and ~v are both ‘small’, so is
e′: for fixed ~v , e′ is normally distributed with std. dev. ‖~v‖ · αq, so is ‘small’ if ~v · αq << q, or

β = ‖~v‖ << 1/α.

In ‘Random LWE Scenario’ (~y uniform in Zm
q ): e′ = ~vT ·~e mod q is uniformly random in Zq , not

likely to be ‘small’ compared to q

If |e ′| < q/4, Return ‘REAL LWE’, else return ‘Random LWE’.

Conclusion: Solving Decision LWEq,m,n,α reduces to solving
SISq,m,n,β≈1/α. Choose parameters so that SISq,m,n,β≈1/α is hard!
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Learning with Errors (LWE) Problem - Practical Security
The condition αq > 2

√
n from Regev’s security reduction is

important to security (in general)!

LWE insecure when αq ≈ 1 and m is sufficiently large
(≥ m2)!!

Idea: Algebraic attacks!
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Efficiency Considerations in Lattice-Based Crypto.

Recall Regev’s public-key encryption scheme [Reg05]:
Public key pk = (A←↩ U(Zm×n

q , ~p = A ·~s + ~e mod q) with
~e ←↩ χm

αq.
Length(pk): = m · (n + 1) log q ≥ n2 log q bits — at least
quadratic in sec. par λ: O(λ2)!!

Secret key ~s ∈ Zn
q.

Encryption – Enc (m ∈ Zt): Return ciphertext
C = (~aT = ~r T · A mod q, c = ~r T · ~p + dq/tc ·m mod q).

Ciphertext expansion ratio: = Length(C)

Length(m)
= (n+1)·log q

log t – at

least linear in sec. par. λ: n + 1 = O(λ)!!.
Encryption time: O(mn log q) bit ops. – at least quadratic in
λ: O(λ2)!!

Decryption – Dec (C = (~aT , c)): Compute
c ′ = c −~aT ·~s mod q, round to nearest multiple of dq/tc
mod q to get c ′′. Return plaintext m =

~c ′′

dq/tc .
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Efficiency Considerations: Ciphertext Expansion

Reducing ciphertext expansion ratio in Regev encryption
Observe: The ~aT component of ciphertext encodes only enc.
randomness, not message bits.
Idea ([PVW08]): ‘Reuse’ this randomness with new secrets ~si :
Modified Regev Scheme (` = number of secret key vectors):

Public key pk = (A←↩ U(Zm×n
q , P = (~p1, . . . ,~p`) where ~pi = A ·~si +~ei mod q) with ~ei ←↩ χm

αq .

Length(pk): = m · (n + `) · log q – ≈ (1 + `/n)-times larger than orig. scheme (` = 1).

Secret key S = (~s1, . . . ,~s`) ∈ Zn×`
q – ` times longer but not in practical storage!

Encryption – Enc (~m ∈ Z`t ): Return ciphertext

C = (~aT = ~rT · A mod q,~cT = ~rT · P + dq/tc · ~m mod q).

Ciphertext expansion ratio:
Length(C)
Length(~m)

=
(n+`)·log q
` log t

= (1 + n
`

) · log q
log t

If q = tO(1), expansion ratio = O(1) for ` ≥ n!

Encryption time: O(m(n + `) log q) bit ops – ≈ (1 + `/n)-times larger than orig. scheme (` = 1).

Decryption – Dec (C = (~aT ,~cT )): Compute (~c′)T = ~cT −~aT · S mod q, round to nearest multiple of

dq/tc mod q to get c′′. Return plaintext ~m =
~c′′
dq/tc .
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Efficiency Considerations: Ciphertext Expansion

Q: But, why is reusing ~aT still as secure as LWE?
A: Security reduction from LWE – example of ‘hybrid argument’.
Suppose there was an efficient IND-CPA attack algorithm B,
breaking 2λ security of Regev’s encryption scheme:

B runs in time TB and wins IND-CPA game with prob. 1/2 + εB (with TB < 2λ and non-neg.

εB > 1/2λ).

Then, we construct ` Dec-LWE algorithms, D1, . . . ,D` such that

at least one Di advantage ≥ εB−1/2λ+1

` ≥ 1/2λ+1+log `.
Given Dec-LWE instance (q, n,A, ~y), Di does following:

Di runs attacker B on input public key (A, P = (~p1, . . . ,~p`)), where
For j = 1, . . . , i − 1, Di sets ~pj = A ·~sj +~ej mod q, where ~sj ←↩ U(Zn

q ) and ~ej ←↩ χm
αq are

sampled independently by Di .
For j = i , Di sets ~pi = ~y .

For j = i + 1, . . . , `, Di samples independent ~pi ←↩ U(Zm
q ).

When B makes its challenge query (~m0, ~m1), Di behaves like the real challenger: chooses a random bit b,
picks coefficient vector ~r ←↩ U({−Br , . . . , Br}m) and computes:

~aT = ~rT · A,~cT = ~rT · P + dq/tc · ~mb mod q.

Di returns challenge ciphertext (~aT , c).
When B returns a guess b′ for b, D returns ‘Real’ if b′ = b, and ‘Rand’ if b′ 6= b.
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Efficiency Considerations: Ciphertext Expansion
‘Reusing’ ~aT security reduction (cont.): Consider two LWE
scenarios for ~y as input to Di :

‘Real’ LWE scenario, ~pi = ~y = A ·~s +~e mod q – first i vectors ~p1, . . . ,~pi in public key are computed

exactly as in the real IND-CPA game, remaining `− i vectors ~pi+1, . . . ,~p` are random.

Call this distribution of P (first i ~pj ’s ‘real’, last `− i ~pj ’s ‘random’) the ith ‘hybrid’ distribution.
Define the winning probability of B for ith ‘hybrid’ distribution of P as pi = 1/2 + εi , hence Di
returns ‘Real’ with prob. 1/2 + εi .

Note two extreme values of pj are known:

p0 ≤ 1/2 + 1/2λ+1 (all ~pj ’s uniformly random) by LHL argument (as before), except the

LHL condition becomes (2Br + 1)m >> qn+`.

p` = 1/2 + εB (all ~pj ’s as in real IND-CPA game) by assumption on B.

‘Random’ LWE scenario, ~pi = ~y ←↩ U(Zm
q ) – first i − 1 vectors ~p1, . . . ,~pi−1 in public key are computed

exactly as in the real IND-CPA game, remaining `− i + 1 vectors ~pi , . . . ,~p` are random.

This is the (i − 1)’th hybrid distribution of P.

So: Distinguishing advantage of Di is ∆i = |pi − pi−1|.
Since p` − p0 ≥ εB − 1/2λ, one of ` ∆i ’s (say i = i∗) must be ≥ (εB − 1/2λ)/` ≥ 1/(` · 2λ+1).

Conclusion: Di∗ contradicts the 2λ+1+log `-security of LWE!
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Reducing Storage and Computation: Structured Lattices

How to reduce quadratic stored key length of matrix A?
Recall A is a random m × n matrix with m ≥ n – number of
elements m · n ≥ n2:

A =



a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

...
...

. . .
...

am,1 am,2 · · · am,n


Idea: Reuse some ai ,j ’s in matrix, only store them once!

Structured matrices / lattices!

But, how to do it securely?
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Reducing Storage and Computation: Structured Lattices

Idea: [HPS96,M02] Replace m × n random matrix A (entropy

Õ(n2)) with m/n blocks of n × n negacyclic square matrices

(entropy Õ(n)): Use n × n negacyclic ‘rot’ matrices. For an n-dim.
vector ~a ∈ Zn, define

rot(~a) =


a0 −an−1 −an−2 · · · −a1

a1 a0 −an−1 · · · −a2

a2 a1 a0 · · · −a3

...
...

... · · ·
...

an−1 an−2 an−3 · · · a0


to build

A =


rot(~a1)
rot(~a2)

...
rot(~am/n)

 .
Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 11/33



Correspondence with Polynomial Ring Rq = Zq[x ]/(xn + 1)

rot matrix-vector product ≡ Polynomial Mult. mod xn + 1: A
polynomial a(x) = a0 + a1 · x . . .+ an−1 · xn−1 with ai ∈ Zq can be

represented by its coefficient vector
−−→
a(x):

−−→
a(x)T = [a0, a1, . . . , an−1] ∈ Zn

q.

For two polynomials a(x), s(x) ∈ Zq[x ] of deg. < n − 1, let
c(x) = a(x) · s(x) mod xn + 1.

c(x) =
∑

i<n si x
i a(x) mod xn + 1.

x · (a0 + a1x + a2x2 · · · an−1xn−1) mod xn + 1 =
−an−1 + a0x + a1x2 + · · ·+ an−2xn−1.

Hence can write c(x) as vector-matrix product
−→c = rot(

−−→
a(x)) ·

−−→
s(x) mod q:


c0
c1

.

.

.
cn−1

 =



a0 −an−1 −an−2 · · · −a1
a1 a0 −an−1 · · · −a2
a2 a1 a0 · · · −a3

.

.

.

.

.

.

.

.

. · · ·
.
.
.

an−1 an−2 an−3 · · · a0

 ·


s0
s1

.

.

.
sn−1

 .
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Correspondence with Polynomial Ring Rq = Zq[x ]/(xn + 1)

Set of polynomials {a(x) = a0 + a1 · x . . .+ an−1 · xn−1 : ai ∈ Zq}
of degree < n with Zq coefficients forms a polynomial ring
Rq = Zq[x ]/(xn + 1) under the operations

polynomial addition modulo xn + 1 – corresponds to addition
of coefficient vectors:

−−−−−−−−−−−−−−−−−→
a(x) + b(x) mod xn + 1 =

−−→
a(x) +

−−→
b(x).

polynomial multiplication modulo xn + 1 – corresponds to
(rot-matrix) times (coefficient vector) product:

−−−−−−−−−−−−−−−−→
a(x) · b(x) mod xn + 1 = (rot

−−→
a(x)) ·

−−→
b(x).

with the operations on the coefficients performed in Zq (i.e.
modulo q). (When working in Rq, we won’t write modxn + 1
(understood)).
Sometimes, also refer to ring R = Z[x ]/(xn + 1): same as Rq

except coefficients arithmetic is in Z (not mod q).
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Reducing Computation: FFT

Q: How does correspondence to polynomial multiplication help?
A: Use fast polynomial multiplication algorithms to speed up
rot(~a) ·~s computation!

Use O(m/n · n log n) add./mult. ops. over Zq instead of O(m/n · n2)!

Idea: Reduce to (Number Theory) Fast Fourier Transform
(FFT) computations For a(x), s(x) ∈ Zq[x ], to compute
c(x) = a(x) · s(x) mod xn + 1, (deg. of a(x), s(x) < n):

Choose q such that 2n divides q − 1.

Then xn + 1 has n zeros in Zq of the form ζ2i+1 for i = 0, . . . , n − 1, where ζ ∈ Zq is a

primitive 2nth root of 1 in Zq .

Evaluate a(x) and b(x) at the n points ζ2i+1 in Zq to compute the evaluation vectors:

(a(ζ), . . . , a(ζ2n−1)) and (s(ζ), . . . , s(ζ2n−1)). Corresponds to multiplication by an FFT-like matrix.
(takes O(n log n) mult./add. over Zq ).

Multiply the evaluations at each point: c(ζ2i+1) = a(ζ2i+1) · s(ζ2i+1) for i = 0, . . . , n − 1.

Interpolate to reconstruct (a(ζ), . . . , a(ζ2n−1)) to reconstruct c(x). Corresponds to multiplication by an

FFT-like matrix. (takes O(n log n) mult./add. over Zq ).
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Efficiency Considerations in Lattice-Based Crypto.
Ring Variant of Regev’s public-key encryption scheme over ring
Rq = Zq[x ]/(xn + 1) (m′ = m/n for ‘orig.’ m, ` = n):

Public key pk = (A←↩ U(Rm′×1
q ), ~p = A · s + ~e mod q) with

~e = [e1, . . . , em′ ]
T and coefficients of ei sampled

independently from χαq.

Length(pk): = m′ · 2n log q = O(n log2 q) = O(λ log2 λ) bits
— ‘quasi-linear’ in sec. par λ!

Secret key s ∈ Rq.

Encryption – Enc (m ∈ Rt): Return ciphertext
C = (a = ~r T · A ∈ Rq, c = ~r T · ~p + dq/tc ·m mod q ∈ Rq).

Ciphertext expansion ratio: =
Length(C)
Length(m)

= 2n·log q
n log t

= 2·log q
log t

= O(log λ)!

Encryption time: With FFT, O(m′n log n · log2 q) = O(λ log3 λ) bit ops. – ‘quasi-linear’ !

Decryption – Dec (C = (a, c)): Compute c ′ = c − a · s ∈ Rq,
round to nearest multiple of dq/tc mod q to get c ′′ ∈ Rq.

Return plaintext m =
~c ′′

dq/tc ∈ Rt .
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Efficiency Considerations in Lattice-Based Crypto.
Poly. ring naturally can improve other lattice crypto. schemes:

Definition

Ring variant of Ajtai’s Hash Function gq,m′,n,d ,A: Pick
A = (a1, . . . , am′) uniformly random 1×m′ matrix over Rq (A =
function ‘public key’). Given input ~x ∈ Rm′ having ‘small’
coordinates (‖~x‖∞ ≤ d), hash function output is defined as

gq,m,n,d ,A(~x) = A · ~x = a1 · x1 + · · · am′ · xm′ ∈ Rq.

Security: Ring-SIS problem (see next slides). Efficiency: O(n log n)
key (A), O(n log2 n) multiplications mod q.
Example implementation: SWIFFT hash function
[LMPR08,ADLMPR08]

Parameters: n = 64,m = 16, q = 257, compression function
input (binary): 1024-bit, output: ≈ 512-bit
Key length: ≈ 8 kbit
Eval. Speed (optimized FFT, SIMD): ≈ 60 cycles/byte (≈ 40
MB/s on 3 GHz CPU)Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 16/33



Security of Ring Learning with Errors (Ring-LWE) Problem

Problem

Decision Ring Learning with Errors (Decision-RLWE)
Problem – Decision − RLWEq,m,n,α:
Given q,m, n, α,A←↩ U(Rm′×n

q ), ~y, distinguish between the
following two scenarios:

‘Real’ Scenario: ~y = A ·~s + ~e mod q (with ~e ←↩ χm′
αq and

~s ←↩ U(Zn
q)) (exactly as in search LWE).

‘Random’ Scenario: ~y ←↩ U(Zm
q ).

Note chiαq is a rounded Gaussian distribution as in LWE definition.
Why do we believe Ring-LWE/Ring-SIS are hard? Similar situation
to SIS/LWE, but less certain...
Theoretical Reason: Analogue of Regev’s average-case to
worst-case reduction for LWE can also be established for
Ring-SIS/Ring-LWE (Lyubashevsky Peikert Regev 2010 [LPR10]):

Theorem
For the ring R = Z[x]/(xn + 1) with n a power of 2, and q = Poly(n) prime with q − 1 divisible by 2n,fix ε > 0
and 0 < α < 1, and m′ = O(1). If there is an algorithm A that solves Decision-RLWEq(n),m′(n),n,α(n) in

poly-time, with non-negligible distinguishing advantage, for α(n) · q(n) > n1.25+ε

Then there is a quantum algorithm B that solves γ(n)-SVP in polynomial time for all R-ideal lattices L of
dimension n with:

γ = Õ(n1.75+ε
/α).

Worst-case γ-SVP guarantee not with respect to all arbitrary lattices but all structured R-ideal lattices -
an R-ideal lattice consists of a subset of R (called an ideal of R), that is closed under addition, and by
multiplication by all elements of R.
Hardness of γ-SVP restricted to R-ideal lattices (γ-IdealSVP) is not as well studied as unrestricted γ-SVP,
but seems hard. No better algorithms for γ-IdealSVP in general ideals known than the ones for arbitary
lattices. (But, in 2014-2015 improved algorithms discovered for special ideals called principal ideals).
Restriction m′ = O(1) can be relaxed [LPR10] with more complex noise distributions and larger γ.

Choice of ring R can be relaxed but can have critical affect on security! (e.g.: next week’s tutorial).
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Ring Learning with Errors (RLWE) Problem - Practical
Security

Analogously to LWE, we also have:
Practical Reason: In most cases, essentially best known attack on
Decision RLWE is a reduction of RLWE to RSIS. Hardness of RSIS
for same R is assessed similarly to SIS!

Problem

Ring Small Integer Solution (RSIS) Problem – RSISq,m′,n,β:
Given n and a matrix A sampled uniformly in R1×m′

q ,

find ~z ∈ Rm′ \ {~0} such that A~v = ~0 mod q and ‖~v‖ ≤ β.

Worst-case to average case connection for RSIS for ring R is
known, analogously to Ajtai’s theorem.

The choice of ring R is important for security and efficiency
(usually our usual choice of R suffices).
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Efficiency Considerations in Lattice-Based Crypto.
Ring-Regev encryption scheme has:

2m′ ring elements in public key: (A, ~p) ∈ Rm′×2
q .

2 ring elements in ciphertext (a, c) ∈ R2
q .

How to reduce public key and/or ciphertext to just 2 or even 1 ring
elements?
Two schemes:

‘Diffie-Hellman/ElGamal’ analogue of Ring-Regev [LPR10]

Public key and ciphertext: 2 elements of Rq each
Security: as hard as Ring-LWE [LPR10]

NTRUEncrypt [HPS96]

Public key and ciphertext: 1 element of Rq each
Security:

’NTRU key-cracking’ + Ring-LWE – original variant [HPS96],
or
Ring-LWE, longer n, q – Modified variant [SS11]
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Efficiency Considerations in Lattice-Based Crypto.
Ring-based ‘Diffie-Hellman/ElGamal’ analogue Encryption Scheme
[LPR10,LP11]:
Recall Diffie-Hellman/ElGamal encryption scheme in a group G of
order q with generator g :
Public key: (g , pb = g b) ∈ G 2, Secret key: b ←↩ U(Rq).
Encryption(m ∈ G ; a←↩ U(Rq)):
(pa = g a ∈ G , c = pa

b ·m = g a·b ·m ∈ G ).
Decryption((pa, c) ∈ G 2): c/pb

a = c/g a·b = m.
Ring-based Diffie-Hellman analogue in Rq:
Public key: (g ←↩ U(Rq), pb = g · b + eb ∈ G , b, eb ←↩ χαq),
Secret key: b ∈ Rq.
Encryption(m ∈ Rt ; a, ea, ec ←↩ χαq):
(pa = g · a + ea ∈ Rq, c = pb · a + ec + dq/tc ·m ∈ Rq).

Note: c = g · b · a + ec · a + dq/tc ·m ∈ Rq).

Decryption((pa, c) ∈ G 2):
c−pa ·b = c−(g ·a ·b+ea ·b) = dq/tc·m+ec ·a+ea ·b ≈ dq/tc·m.
Round and divide by dq/tc.Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 20/33



Efficiency Considerations in Lattice-Based Crypto.
Security of Ring-based Diffie-Hellman analogue scheme based on
variant of Ring-LWE with small secret.
Ring-LWE with secret sampled from error distribution
(SSRing-LWE): Same as Ring-LWE, but secret s ←↩ χαq instead
of s ←↩ U(Rq).
Lemma. Ring-LWE with parameters m′, n, α, q and secret sampled
from the error distribution (i.e. SSRing-LWE) is as hard as
standard Ring-LWE with parameters m′ + 1, n, α, q. (next week’s
tute!).
Simple security reduction for Diffie-Hellman encryption scheme
from SSRing-LWE can be given. (tutorial).
Lemma. The Diffie-Hellman encryption scheme is as secure as
Ring-LWE with parameters m′ = 2, n, α, q.
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NTRU Cryptosystem (original variant [HPS96]): Key
Generation

Ring Parameters: n prime, q ≈ n a power of 2, p small, ring
R− = Z[x ]/(xn − 1).
(e.g. (n, q, p) = (503, 256, 3)).

Secret key sk : f , g ∈ R− sampled indep. from distrib. χσ
with:

f is invertible mod q and mod p
The coeffs of f and g are small

Supp(χσ) = {−1, 0, 1}n.

Public key pk: h = g/f mod q.

NTRU key cracking Security intuition

Given h ∈ R−q , finding g , f ∈ R− small s.t. h = g/f [q] is hard.
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NTRU Cryptosystem (original variant [HPS96]): Key
Generation

Ring Parameters: n prime, q ≈ n a power of 2, p small, ring
R− = Z[x ]/(xn − 1).
(e.g. (n, q, p) = (503, 256, 3)).

Secret key sk : f , g ∈ R− sampled indep. from distrib. χσ
with:

f is invertible mod q and mod p
The coeffs of f and g are small

Supp(χσ) = {−1, 0, 1}n.

Public key pk: h = g/f mod q.

NTRU key cracking Security intuition
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NTRU Cryptosystem (original variant [HPS96]):
Encryption/Decryption

sk: f , g ∈ R− small with f invertible mod q and mod p
pk: h = g/f mod q

Encryption of M ∈ R with coeffs in {0, . . . , p − 1}:
Sample s ∈ R−q from distrib. χρ resp. with small coeffs –
Supp(χρ) = {−1, 0, 1}n.
Send C := phs + M mod q

Decryption of C ∈ R−q :

f × C = p(gs) + fM mod q
Smallness ⇒ equality holds over R−

(f × C mod q) mod p = fM mod p
Multiply by the inverse of f mod p

Security intuition

The mask phs hides the plaintext M in the ciphertext C .
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Security of NTRU: Computational/Statistical Problems

Essentially two ways to break the IND-CPA security of NTRU:

Crack the public key:

NTRU Decision Key Cracking Problem DNKCn,q,φ,χσ

Given (n, q, φ) and h, distinguish

NTRU key distribution D0 = {h = g/f ∈ Rq : f , g ←↩ χσ}.

Uniform key distribution D1 = {h←↩ U(R∗q )}.

Crack the ciphertext for a uniform key:

NTRU Decision Ciphertext Cracking Problem DNCCn,q,φ,χρ,χβ

Given (n, q, φ), h sampled from U(R∗q ), and c, distinguish

NTRU zero-message ciphertext distribution
D0 = {c = phs : s ←↩ χρ, e ←↩ χβ}.

Uniform distribution D1 = {c ←↩ U(Rq)}.
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NTRU Cryptosystem: Security of original variant [HPS96]

Security aspects of original variant:

NTRU Decision Key Cracking problem:

Non-uniform distribution of h in R−q due to very small
coefficients of f , g
No known attacks, but also not related to well-known lattice
problems...

NTRU Decision Ciphertext Cracking problem:

Trivial distinguishing attack (no noise): Given h, c , can easily
distinguish if c = phs or c uniform in R−q !

Modified variant of NTRU given in [SS11] ‘fixes’ these two issues.
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NTRU Cryptosystem Original [HPS96] variant

Parameters: n, q a power of 2, R = R−.

Key generation:

sk: f , g ∈ R with:

f invertible mod q and p.
Coeffs of f and g in {−1, 0, 1}

pk: h = g/f mod q.

Encryption of M ∈ R with coeffs in {0, 1}:
C := phs + M mod q, with coeffs of s in {−1, 0, 1}.

Decryption of C ∈ Rq:

f × C mod q = pgs + fM (over R)

(f × C mod q) mod p = fM mod p.

Multiply by the inverse of f mod p.
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NTRU Cryptosystem (Modified variant [SS11])

Parameters: n a power of 2, q prime, R = R+.

Key generation:

sk: f , g ∈ R with:
f invertible mod q and p.
Coeffs of f and g of magnitude ≈ √q

pk: h = g/f mod q.

Encryption of M ∈ R with coeffs in {0, 1}:
C := p(hs + e) + M mod q, with coeffs of s, e of
magnitude ≈ β.

Decryption of C ∈ Rq:

f × C mod q = p(gs + fe) + fM (over R)

(f × C mod q) mod p = fM mod p.

Multiply by the inverse of f mod p.
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Security of NTRU: Computational/Statistical Problems

Essentially two ways to break the IND security of NTRU:

Crack the public key:

NTRU Decision Key Cracking Problem DNKCn,q,φ,χσ

Given (n, q, φ) and h, distinguish

NTRU key distribution D0 = {h = g/f ∈ Rq : f , g ←↩ χσ}.

Uniform key distribution D1 = {h←↩ U(R∗q )}.

Crack the ciphertext for a uniform key:

NTRU Decision Ciphertext Cracking Problem DNCCn,q,φ,χρ,χβ

Given (n, q, φ), h sampled from U(R∗q ), and c, distinguish

NTRU ciphertext distribution
D0 = {c = phs + e : s ←↩ χρ, e ←↩ χβ}.

Uniform distribution D1 = {c ←↩ U(Rq)}.
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IND Security of NTRU: Sufficient Condition

Proposition (Adapted from [SS11])

If DNKC and DNCC are both hard, then NTRUcryptosystem
achieves semantic (IND) security.

Proof by contradiction – three ‘games’ with adversary A:

INDb – pk: h = g/f , ciph: cb = p · (hs + e) + mb,
pb = PrINDb

[A(h, cb) = 1].
IND’b – pk: h←↩ U(R∗q ), ciph: cb = p · (hs + e) + mb,
p′b = PrIND’b [A(h, cb) = 1].

|p′b − pb| = non-neg(n) → A breaks DNKC.

IND”b – pk: h←↩ U(R∗q ), ciph: cb = p · U(Rq) + mb,
p′′ = PrIND”b

[A(h, cb) = 1].
|p′′b − p′b| = non-neg(n) → A breaks DNCC.

Else, A can distinguish IND”0 from IND”1: contradiction –
p · U(Rq) term perfectly hides mb!
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How to make both DNKCand DNCCproblems provably hard?

[SS11] strategy to prove hardness of DNKC and DNCC problems:

Choose χσ for f , g to make DNKC statistically hard.
f , g ←↩ χσ → h = g/f almost uniformly distributed on R∗q .
Must work in statistical region: |Supp(χσ)| > |R∗q | → σ >

√
q.

(tradeoff: larger parameters than original scheme to avoid
additional ’NTRU key cracking assumption’).
Use a (modified) discrete Gaussian distribution χσ.
Tradeoff: Larger size of q, n versus original variant.

Choose χρ = χβ for s, e to make DNCC computationally hard.
Change rings: R−q = Zq[x ]/(xn − 1)→ R+

q = Zq[x ]/(xn + 1),

n = 2k .
h←↩ U(R∗q ), s, e ←↩ χβ → (h, c = hs + e) computationaly
indist. from U(R∗q × Rq), if SSRing-LWE problem hard.
Use a rounded Gaussian distribution χβ .
Addition of error term: low-cost fix for IND-CPA security
(avoid known attack!).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 4: Lattice-Based Crypto. IV Mar 2014 29/33



Estimated Parameters / Performance of NTRU (Orig.
variant)

Sample parameters / implementation figures for NTRU (orig.
variant) [HHPW09]:
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Estimated Parameters / Performance of Ring
Diffie-Hellman analogue

Sample parameters / implementation figures for Diffie-Hellman
analogue scheme [LP11]:
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