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Plan for this lecture

How to construct lattice-based encryption schemes?
Learning with Errors (LWE) Problem
Symmetric-key encryption from LWE
Public-key encryption from LWE: Regev’s cryptosystem (2005).
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Learning with Errors (LWE) Problem

Small Integer Solution (SIS) problem useful for hash functions and
digital signatures, but seems not sufficient for encryption

Many to one function — not invertible!

Q: What lattice-based problem can we use for encryption?

A: Learning with Errors (LWE) Problem (Regev, 2005) –
one-to-one and invertible!

Idea: add some ‘small’ noise to a lattice point.
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Learning with Errors (LWE) Problem - Search Variant

LWE – Setup:
Fix integer q, and integers m, n.

Let

A =



a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

.
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.
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an,1 an,2 · · · an,n

.
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.

.

.
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.

.
am,1 am,2 · · · am,n


be an m × n matrix with entries independent and uniformly random in Zq (as in SIS).

Let ~sT = [s1s2 · · · sn ] be a vector of independent uniformly random elements of Zq . (the “secret”).

Let ~eT = [e1e2 · · · en · · · em ] be a vector of independent ‘small’ integers, each sampled from a probablity
distribution χαq (the “error”).

What does ‘small’ ei mean?
|ei | ≤ α · q with high probability, for some parameter α < 1.

Typically, χαq = Normal (Gaussian) distribution with standard deviation ≈ α · q, rounded to Z.
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Learning with Errors (LWE) Problem - Search Variant

LWE – Setup (cont.)

Let

~y =



a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

...
...

. . .
...

am,1 am,2 · · · am,n


·


s1

s2
...

sn

 +



e1

e2
...

en
...

em


mod q

Problem

Search Learning with Errors (Search-LWE) Problem –
Search − LWEq,m,n,α: Given q,m, n, α, a matrix A←↩ U(Zm×n

q )
and ~y = A ·~s + ~e mod q (with ~e ←↩ χm

αq and ~s ←↩ U(Zn
q)), find ~s.
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Learning with Errors (LWE) Problem - Decision Variant

To construct efficient cryptosystems, search variant is not
sufficient. Need a decision variant of LWE.

Problem

Decision Learning with Errors (Decision-LWE) Problem –
Decision − LWEq,m,n,α: Given q,m, n, α,A←↩ U(Zm×n

q ), ~y,
distinguish between the following two scenarios:

‘Real’ Scenario: ~y = A ·~s + ~e mod q (with ~e ←↩ χm
αq and

~s ←↩ U(Zn
q)) (exactly as in search LWE).

‘Random’ Scenario: ~y ←↩ U(Zm
q ).

Q: What 2λ security level mean?
Possible Ans: No Decision-LWE algorithm D exists that runs in
time T (D) ≤ 2λ and has distinguishing advantage Adv(D) ≥ 2−λ,
where:

Adv(D)
def
=
∣∣∣Pr~y←↩Real[D(A,~y) = Real]− Pr~y←↩Random[D(A,~y) = Real]

∣∣∣.
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Symmetric-Key Encryption from LWE
As a first step, we construct symmetric-key encryption from LWE.

Definition

LWE-based Symmetric-Key Encryption:

Key Generation – KG: Fix integers q, n. Pick secret key
~s ←↩ U(Zn

q).

Encryption – Enc: Fix integers t, `. Given message ~m ∈ Z`t ,
Pick A←↩ U(Z`×nq ) and ‘small’ noise ~e ←↩ χ`α·q.
Compute ~c = A ·~s + ~e + dq/tc · ~m mod q.
Return ciphertext (A,~c).

Decryption – Dec: Given ciphertext (A,~c) and secret key ~s,

Compute ~c ′ = ~c − A ·~s mod q.
Compute ~c ′′ by rounding coordinates of ~c ′ to the nearest
multiple of dq/tc mod q.

Return plaintext ~m =
~c′′

dq/tc .
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Symmetric-Key Encryption from LWE: Correctness

Decryption recovers ~c ′ = ~e + dq/tc · ~m mod q. Rounding succeeds
to recover the ith coordinate mi of ~m if the ith noise coordinate ei
is sufficiently small:

ei <
1

2
· dq/tc ≈ q

2t
.

If noise distribution χαq is (rounded) normal distribution with std.
dev. αq, error probability per coordinate pe is ≈ probability that a
standard normal distributed random variable (mean 0, std. dev 1)
exceeds 1

2tα in magnitude:

pe ≈ 2 ·
(

1− Φ

(
1

2tα

))
,

where Φ is the cumulative distribution function of normal
distribution.
So: pe ‘small’ when the following correctness condition holds:

t <<
1

2α
.
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Symmetric-Key Encryption from LWE: Security
Q: Why is it secure, assuming that Decision-LWE is hard?
A: Security Reduction from Decision-LWE

Show how to build an efficient Dec-LWE algorithm D, given an efficient attack algorithm B breaking
encryption scheme.

Q: What do we mean by ‘B breaks the encryption scheme’?
Possible A: B breaks standard definition of Indistinguishability
security against Chosen Plaintext Attack (IND-CPA) IND-CPA
Attack model: A ‘game’ between a challenger and the attacker B
against the encryption scheme:

Challenger runs Key Gen. algorithm of encryption scheme, obtains a secret key ~s.
Attacker B is given access to an ‘encryption oracle’: B can submit a query chosen plaintext ~m and receive
ciphertext (A, C) = Enc(~s, ~m). After several queries, B outputs a pair of ‘challenge messages’ ~m∗0 , ~m

∗
1 .

Challenger picks a random bit b ←↩ U({0, 1}), computes ‘challenge ciphertext’ (A∗, C∗) = Enc(~s, ~m∗b )
for the challenge message selected by b, and gives (A∗, C∗) to B.
Attacker B continues running with query access to the ‘encryption oracle’.

Attacker B outputs a guess b′ for the bit b chosen by the challenger. Attacker ‘wins’ game if b′ = b.

Definition

IND-CPA security (at 2λ security level): Any attack algorithm B
with run-time T (B) ≤ 2λ wins game with prob. ≤ 1/2 + 1/2λ.
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Symmetric-Key Encryption from LWE: Security

Security Reduction from hardness of Decision-LWE
Suppose there was an efficient IND-CPA attack B, breaking 2λ

security of the LWE encryption scheme:
B runs in time TB and wins IND-CPA game with probability 1/2 + εB (with TB < 2λ and εB > 1/2λ).

B makes Q encryption queries overall (including the challenge ciphertext).

Then, given a Decision − LWEq,m=Q·`,n,α instance (q, n,A, ~y), we
build a Dec-LWE algorithm D that runs as follows:

D runs attacker B. When B makes its ith encryption oracle query ~mi , D uses the ith block Ai ∈ Z`×n
q of

` consecutive rows of A and corresponding ith block ~yi ∈ Z`q of ` consecutive rows of ~y to answer the

oracle query with (Ai ,~ci ) where:
~ci = ~yi + dq/tc · ~mi mod q.

Similarly, when B makes its challenge query (~m∗0 , ~m
∗
1 ), D chooses a random bit b and uses the next (not

yet used) blocks Ai∗ ,~yi∗ of A and ~y to respond with (A∗ = Ai∗ ,~c
∗ = ~yi∗ + dq/tc · ~m∗b mod q).

Rest of encryption oracle queries of B answered as above.

When B returns a guess b′ for b, D returns ‘Real’ if b′ = b, and ‘Rand’ if b′ 6= b.
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Symmetric-Key Encryption from LWE: Security

Q: Why does D work? Consider two LWE scenarios for ~y :

‘Real’ LWE scenario, ~y = A ·~s +~e – all ciphertexts returned by D to
B are computed exactly as in the real IND-CPA game, so B wins
game with good probability 1/2 + εB , hence D returns ‘Real’ with
prob. 1/2 + εB .

‘Random’ LWE scenario, ~y is independent and uniformly random in
Z`·Qq – in challenge ciphertext, ~ci is uniformly random in Z`q,
independent of bit b — B gets no information on b, and wins the
game with probability 1/2. Hence D returns ‘Real’ with prob. 1/2.

So: Distinguishing advantage of D = εB > 1/2λ.
Also, run-time of D is (approx.) run-time of B, i.e. < 2λ.
Conclusion: Contradiction with 2λ security of Decision-LWE!

Theorem

IND-CPA security of LWE encryption (Q encryption queries) is at
least as hard as Decision − LWEq,m=Q·`,n,α.
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Public-Key Encryption from LWE

Now we convert from symmetric-key to public-key encryption -
Regev’s cryptosystem (2005).
Ideas (take ` = 1):

Observation: Enc(~s,m) = Enc(~s, 0) + [~0T ,m] mod q.
Recall: [~aT ,~aT ·~s + e + m] = [~aT ,~aT ·~s + ~e] + [~0T ,m].

Attempt 1: Publish ~p = Enc(~s, 0) in public key, add [~0T ,m]
during encryption.

But... is it secure???
Attempt 2: Publish several ~pi = Enc(~s, 0)’s in public key.
Combine them linearly with random coefficients ri during
encryption to a ‘fresh’ c = Enc(~s, 0)!

Observation: For small ri ’s,
r1 · Enc(~s, 0) + r2 · Enc(~s, 0) = Enc(~s, 0)

r1 · [~aT1 ,~aT1 ·~s + e1] + r2 · [~aT2 ,~aT2 ·~s + e2] = [~aT ,~aT ·~s + e],
where ~a = r1 ·~a1 + r2 ·~a2, e = r1 · e1 + r2 · e2.

Correctness: |e| > |e1|, |e2|, but ‘small’ if r1, r2 ‘small’.
Security: ~a is ≈ uniformly random if ri ’s have enough entropy!
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Public-Key Encryption from LWE

Definition

Regev’s LWE-based Public-Key Encryption:

Key Generation – KG: Fix integers q,m, n. Pick secret key
~s ←↩ U(Zn

q). Publish public key (A, ~p), where:
A←↩ U(Zm×n

q ).

~p = A ·~s +~e mod q with ~e ←↩ χm
αq .

Encryption – Enc: Fix integers t,Br . Given message m ∈ Zt

and public key (A, ~p),
Pick coefficient vector ~r ←↩ U({−Br , . . . , Br}m).
Compute:

~aT = ~rT · A, c = ~rT ·~p + dq/tc · m mod q.

Return ciphertext (~aT , c).

Decryption – Dec: Given ciphertext (~aT , c) and secret key ~s,
Compute c′ = c −~aT ·~s mod q.
Compute c′′ ∈ Zq by rounding c′ to the nearest multiple of dq/tc mod q.

Return plaintext m =
~c′′
dq/tc .
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Public-Key Encryption from LWE: Correctness

In ciphertext, c = ~rT · A ·~s +~rT ·~e + dq/tc · m mod q = ~aT ·~s + e + dq/tc · m mod q, where

e = ~rT ·~e.

Decryption recovers c′ = e + dq/tc · ~m mod q. As in symmetric-key scheme, rounding succeeds to
recover m if the ‘new’ noise e is sufficiently small:

e <
1

2
· dq/tc ≈

q

2t
.

If noise distribution χαq of ~e coordinates is (rounded) normal distribution with std. dev. αq, distribution

of ‘new’ noise e = ~rT ·~e (neglecting rounding) is, for a fixed ~r , also normal distributed with std. dev.

αq · ‖~r‖. And the expected value of ‖~r‖ is ≈
√

Br (Br + 1)m/3, which is a good approximation to ‖~r‖
with high probability.

Hence error probability per coordinate pe is probability that a standard normal distributed random variable
(mean 0, std. dev 1) exceeds 1

2tα
in magnitude:

pe ≈ 2 ·
(

1− Φ(
1

2tα
·

√
3

Br (Br + 1)m
)

)
,

where Φ is the cumulative distribution function of normal distribution.

So: pe ‘small’ when the following correctness condition holds:

t <<
1

2α
·

√
3

Br (Br + 1)m
.

Since Br can be 1, lose a factor of O(
√
m) in t (or q for a given t) versus the symmetric-key case.
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Public-Key Encryption from LWE: Security

Q: Why is it secure, assuming that Decision-LWE is hard?
A: As in symmetric-key case, a security reduction!

Build an efficient Dec-LWE algorithm D, given an efficient attack algorithm B breaking encryption scheme.

Q: What do we mean by ‘B breaks the encryption scheme’?
Possible A: Similar to symmetric-key case – IND-CPA definition
for public-key encryption IND-CPA Attack model in the public-key
case for attacker B:

Challenger runs Key Gen. algorithm of encryption scheme, obtains a secret key ~s and a public key (A,~p).
The public key is given to B.
No need to give B access to an ‘encryption oracle’: B can simulate such an oracle by itself, using the public
key. B outputs a pair of ‘challenge messages’ ~m∗0 , ~m

∗
1 .

Challenger picks a random bit b ←↩ U({0, 1}), computes ‘challenge ciphertext’

( ~a∗T , c∗) = Enc((A,~p), ~m∗b ) for the challenge message selected by b, and gives ( ~a∗T , c∗) to B.

Attacker B outputs a guess b′ for the bit b chosen by the challenger. Attacker ‘wins’ game if b′ = b.

Definition

IND-CPA security (at 2λ security level): Any attack B with
run-time T (B) ≤ 2λ wins game with prob. ≤ 1/2 + 1/2λ.
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Public-Key Encryption from LWE: Security

In security reduction, we need a way of measuring closeness of
probability distributions. In crypto., usually use statistical distance
between distributions.

Definition

For two probability distributions D1 and D2 on a discrete set S , the statistical distance ∆(D1,D2) is defined as:

∆(D1,D2)
def
=

1

2
·
∑
x∈S
|D1(x)− D2(x)|.

∆ is always between 0 (D1 = D2) and 1 (D1 and D2 never output the same value).

Why is stat. distance useful? Because no attack algorithm
(function) can increase it!

Lemma

Let D1,D2 be any two distributions, and A be any algorithm. Then:

| Pr
x←↩D1

[A(x) = 1]− Pr
x←↩D2

[A(x) = 1]| ≤ ∆(D1,D2).
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Public-Key Encryption from LWE: Security
Security Reduction from Decision-LWE
Suppose there was an efficient IND-CPA attack algorithm B,
breaking 2λ security of Regev’s encryption scheme:

B runs in time TB and wins IND-CPA game with probability 1/2 + εB (with TB < 2λ and εB > 1/2λ).

Then, given a Decision − LWEq,m,n,α instance (q, n,A, ~y),
Dec-LWE algorithm D works as follows:

D runs attacker B on input public key (A, ~p = ~y).

When B makes its challenge query (~m∗0, ~m
∗
1), D behaves like

the real challenger: chooses a random bit b, picks coefficient
vector ~r ←↩ U({−Br , . . . ,Br}m) and computes:

~a∗
T

= ~rT · A, c∗ = ~rT · ~y + dq/tc ·mb mod q.

D returns challenge ciphertext (~a∗
T
, c∗).

When B returns a guess b′ for b, D returns ‘Real’ if b′ = b,
and ‘Rand’ if b′ 6= b.
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Public-Key Encryption from LWE: Security
Security Reduction from Decision-LWE (cont.)
Q: Why does D work? Consider two LWE scenarios for ~y :

‘Real’ LWE scenario, ~y = A ·~s + ~e – public key and challenge
ciphertext returned by D to B are computed exactly as in the
real IND-CPA game, so B wins game with good probability
1/2 + εB , hence D returns ‘Real’ with prob. 1/2 + εB .
‘Random’ LWE scenario, ~p = ~y is independent and uniformly
random in Zm

q . Use following ‘Leftover Hash Lemma’ (LHL):

Lemma

Let C ←↩ U(Zm×(n+1)
q ) and ~r ←↩ U({−Br , . . . , Br}m). If the following LHL condition holds:

(2Br + 1)m >> qn+1
, (more precisely:(2Br + 1)m ≥ 22(λ+1) · qn+1)

then the probability distribution P of the pair (C ,~rT · C mod q) is statistically indistinguishable from the uniform

distribution U = U(Zm×n
q × Zn+1

q ). More precisely, the statistical distance ∆(P,U) between the probability

distributions P,U is at most

1

2
·

√
qn+1

(2Br + 1)m
.
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Public-Key Encryption from LWE: Security

‘Random’ LWE scenario (cont.): ~p = ~y is independent and
uniformly random in Zm

q

If the distribution P of (A,~y, ~a∗T = ~rT · A,~rT ·~y) was exactly U = U(Zm×n
q × Zn+1

q ), then (as in

symmetric-key case), ciphertext ( ~a∗T , c∗ = ~rT ·~y + dq/tc · mb) is independent of b and public key ~y
(contains no information on b), and hence D returns ‘Real’ with prob. 1/2.

By LHL, ∆(P,U) ≤ 1
2
·
√

qn+1

(2Br +1)m
= δ. By LHL condition, δ ≤ 1/2λ+1 is negligible, so from

property of statistical distance (wk 4 tute), D returns ‘Real’ with probability ≤ 1/2 + δ ≤ 1/2 + 1/2λ+1.

So: Distinguishing advantage of D
≥ εB − 1/2λ+1 ≥ 1/2λ − 1/2λ+1 ≥ 1/2λ+1.
Also, run-time of D is (approx.) run-time of B, i.e. < 2λ.
Conclusion: Contradiction with 2λ+1 security of Decision-LWE!

Theorem

If LHL condition holds, IND-CPA security of Regev’s encryption
scheme is at least as hard as Decision − LWEq,m,n,α.
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Public-Key Encryption from LWE: Security

Choice of Parameters for Regev’s Encryption Scheme
The LHL condition tells us how large m should be chosen:

(2Br+1)m ≥ 22(λ+1)·qn+1 implies m ≥ (n + 1) · log q + 2 · (λ+ 1)

log(2Br + 1)
.

Q: How to choose the other parameters of Regev’s scheme?

A: Based on the security level and LWE problem’s relation to
lattice problems (next lecture!)
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