FIT5124 Advanced Topics in Security Lecture 3: Lattice-Based Crypto. III

Ron Steinfeld Clayton School of IT Monash University

March 2016

Plan for this lecture

• How to construct lattice-based encryption schemes?

- Learning with Errors (LWE) Problem
- Symmetric-key encryption from LWE
- Public-key encryption from LWE: Regev's cryptosystem (2005).

Small Integer Solution (SIS) problem useful for hash functions and digital signatures, but seems not sufficient for encryption

• Many to one function — not invertible!

Q: What lattice-based problem can we use for encryption?

- A: Learning with Errors (LWE) Problem (Regev, 2005) one-to-one and invertible!
- Idea: add some 'small' noise to a lattice point.

Learning with Errors (LWE) Problem - Search Variant

LWE – Setup:

- Fix integer q, and integers m, n.
- Let

A =	$\begin{bmatrix} a_{1,1} \\ a_{2,1} \end{bmatrix}$	a _{1,2} a _{2,2}	· · · · · · ·	a _{1,n} a _{2,n}
	: a _{n,1}	: a _{n,2}	``. 	: an,n
	:	: a _{m,2}	·	: : am,n

be an $m \times n$ matrix with entries independent and uniformly random in \mathbb{Z}_q (as in SIS).

- Let $\vec{s}^T = [s_1 s_2 \cdots s_n]$ be a vector of independent uniformly random elements of \mathbb{Z}_q . (the "secret").
- Let e^T = [e₁e₂ ··· e_n ··· e_m] be a vector of independent 'small' integers, each sampled from a probability distribution χ_{αq} (the "error").

What does 'small' e_i mean?

- $|e_i| \leq \alpha \cdot q$ with high probability, for some parameter $\alpha < 1$.
- Typically, $\chi_{\alpha q} =$ Normal (Gaussian) distribution with standard deviation $\approx \alpha \cdot q$, rounded to \mathbb{Z} .

Learning with Errors (LWE) Problem - Search Variant

Let

$$\vec{y} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} \cdot \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \\ \vdots \\ e_m \end{bmatrix} \mod q$$

Problem

Search Learning with Errors (Search-LWE) Problem – Search – $LWE_{q,m,n,\alpha}$: Given q, m, n, α , a matrix $A \leftrightarrow U(\mathbb{Z}_q^{m \times n})$ and $\vec{y} = A \cdot \vec{s} + \vec{e} \mod q$ (with $\vec{e} \leftrightarrow \chi_{\alpha q}^m$ and $\vec{s} \leftarrow U(\mathbb{Z}_q^n)$), find \vec{s} .

Learning with Errors (LWE) Problem - Decision Variant

To construct efficient cryptosystems, search variant is not sufficient. Need a decision variant of LWE.

Problem

Decision Learning with Errors (Decision-LWE) Problem – Decision – $LWE_{q,m,n,\alpha}$: Given $q, m, n, \alpha, A \leftarrow U(\mathbb{Z}_q^{m \times n}), \vec{y}$, distinguish between the following two scenarios:

• <u>'Real' Scenario:</u> $\vec{y} = A \cdot \vec{s} + \vec{e} \mod q$ (with $\vec{e} \leftrightarrow \chi^m_{\alpha q}$ and $\vec{s} \leftarrow U(\mathbb{Z}^n_q)$) (exactly as in search LWE).

• 'Random' Scenario:
$$\vec{y} \leftarrow U(\mathbb{Z}_q^m)$$
.

Q: What 2^{λ} security level mean? **Possible Ans:** No Decision-LWE algorithm D exists that runs in time $T(D) \leq 2^{\lambda}$ and has distinguishing advantage $Adv(D) \geq 2^{-\lambda}$, where:

•
$$\operatorname{Adv}(D) \stackrel{\text{def}}{=} \left| \operatorname{Pr}_{\vec{y} \leftrightarrow \operatorname{Real}}[D(A, \vec{y}) = \operatorname{Real}] - \operatorname{Pr}_{\vec{y} \leftrightarrow \operatorname{Random}}[D(A, \vec{y}) = \operatorname{Real}] \right|.$$

Symmetric-Key Encryption from LWE

As a first step, we construct symmetric-key encryption from LWE.

Definition

LWE-based Symmetric-Key Encryption:

- Key Generation KG: Fix integers q, n. Pick secret key $\vec{s} \leftrightarrow U(\mathbb{Z}_q^n)$.
- Encryption Enc: Fix integers t, ℓ . Given message $\vec{m} \in \mathbb{Z}_t^{\ell}$,
 - Pick $A \leftrightarrow U(\mathbb{Z}_q^{\ell \times n})$ and 'small' noise $\vec{e} \leftrightarrow \chi_{\alpha \cdot q}^{\ell}$.
 - Compute $\vec{c} = \vec{A} \cdot \vec{s} + \vec{e} + \lceil q/t \rfloor \cdot \vec{m} \mod q$.
 - Return ciphertext (A, \vec{c}) .
- Decryption Dec: Given ciphertext (A, \vec{c}) and secret key \vec{s} ,
 - Compute $\vec{c'} = \vec{c} A \cdot \vec{s} \mod q$.
 - Compute c^{i'} by rounding coordinates of cⁱ to the nearest multiple of [q/t] mod q.

• Return plaintext $\vec{m} = \frac{c^{\vec{\prime}\prime}}{\lceil q/t \rceil}$.

Symmetric-Key Encryption from LWE: Correctness

Decryption recovers $\vec{c'} = \vec{e} + \lceil q/t \rfloor \cdot \vec{m} \mod q$. Rounding succeeds to recover the *i*th coordinate m_i of \vec{m} if the *i*th noise coordinate e_i is sufficiently small:

$$e_i < rac{1}{2} \cdot \lceil q/t
floor pprox rac{q}{2t}$$

If noise distribution $\chi_{\alpha q}$ is (rounded) normal distribution with std. dev. αq , error probability per coordinate p_e is \approx probability that a standard normal distributed random variable (mean 0, std. dev 1) exceeds $\frac{1}{2t\alpha}$ in magnitude:

$$p_e \approx 2 \cdot \left(1 - \Phi\left(\frac{1}{2t\alpha}\right)\right),$$

where Φ is the cumulative distribution function of normal distribution. So: p_e 'small' when the following correctness condition holds:

$$t << \frac{1}{2\alpha}$$

Symmetric-Key Encryption from LWE: Security

- **Q:** Why is it secure, assuming that Decision-LWE is hard? **A:** Security Reduction from Decision-LWE
 - Show how to build an efficient Dec-LWE algorithm D, given an efficient attack algorithm B breaking encryption scheme.

Q: What do we mean by 'B breaks the encryption scheme'? **Possible A:** B breaks standard definition of Indistinguishability security against Chosen Plaintext Attack (IND-CPA) IND-CPA Attack model: A 'game' between a challenger and the attacker B against the encryption scheme:

- Challenger runs Key Gen. algorithm of encryption scheme, obtains a secret key s.
- Attacker B is given access to an 'encryption oracle': B can submit a query chosen plaintext m and receive ciphertext (A, C) = Enc(s, m). After several queries, B outputs a pair of 'challenge messages' m₀^{*}, m₁^{*}.
- Challenger picks a random bit b ← U({0,1}), computes 'challenge ciphertext' (A*, C*) = Enc(\$\vec{s}\$, \$\vec{m}_b^*\$) for the challenge message selected by b, and gives (A*, C*) to B.
- Attacker B continues running with query access to the 'encryption oracle'.
- Attacker B outputs a guess b' for the bit b chosen by the challenger. Attacker 'wins' game if b' = b.

Definition

IND-CPA security (at 2^{λ} security level): Any attack algorithm B with run-time $T(B) \leq 2^{\lambda}$ wins game with prob. $\leq 1/2 + 1/2^{\lambda}$.

Ron Steinfeld

FIT5124 Advanced Topics in SecurityLecture 3: Lattice-Based Crypto. III

9/20

Mar 2014

Symmetric-Key Encryption from LWE: Security

Security Reduction from hardness of Decision-LWE Suppose there was an efficient IND-CPA attack B, breaking 2^{λ} security of the LWE encryption scheme:

B runs in time T_B and wins IND-CPA game with probability $1/2 + \varepsilon_B$ (with $T_B < 2^{\lambda}$ and $\varepsilon_B > 1/2^{\lambda}$).

B makes Q encryption queries overall (including the challenge ciphertext).

Then, given a *Decision* – $LWE_{q,m=Q\cdot\ell,n,\alpha}$ instance (q, n, A, \vec{y}) , we build a Dec-LWE algorithm D that runs as follows:

• D runs attacker B. When B makes its *i*th encryption oracle query \vec{m}_i , D uses the *i*th block $A_i \in \mathbb{Z}_q^{\ell \times n}$ of ℓ consecutive rows of A and corresponding *i*th block $\vec{y}_i \in \mathbb{Z}_q^{\ell}$ of ℓ consecutive rows of \vec{y} to answer the oracle query with (A_i, \vec{c}_i) where:

$$\vec{c}_i = \vec{y}_i + \lceil q/t \rfloor \cdot \vec{m}_i \mod q.$$

- Similarly, when B makes its challenge query (m^{*}₀, m^{*}₁), D chooses a random bit b and uses the next (not yet used) blocks A_i*, y^{*}_i* of A and y^{*} to respond with (A^{*} = A_i*, ζ^{*} = y^{*}_i* + ⌈q/t] · m^{*}_b mod q).
- Rest of encryption oracle queries of B answered as above.
- When B returns a guess b' for b, D returns 'Real' if b' = b, and 'Rand' if $b' \neq b$.

Symmetric-Key Encryption from LWE: Security

Q: Why does D work? Consider two LWE scenarios for \vec{y} :

- 'Real' LWE scenario, $\vec{y} = A \cdot \vec{s} + \vec{e}$ all ciphertexts returned by D to B are computed exactly as in the real IND-CPA game, so B wins game with good probability $1/2 + \varepsilon_B$, hence D returns 'Real' with prob. $1/2 + \varepsilon_B$.
- 'Random' LWE scenario, \vec{y} is independent and uniformly random in $\mathbb{Z}_q^{\ell \cdot Q}$ in challenge ciphertext, \vec{c}_i is uniformly random in \mathbb{Z}_q^{ℓ} , independent of bit b B gets no information on b, and wins the game with probability 1/2. Hence D returns 'Real' with prob. 1/2.
- **So:** Distinguishing advantage of $D = \varepsilon_B > 1/2^{\lambda}$. Also, run-time of D is (approx.) run-time of B, i.e. $< 2^{\lambda}$. **Conclusion:** Contradiction with 2^{λ} security of Decision-LWE!

Theorem

IND-CPA security of LWE encryption (Q encryption queries) is at least as hard as Decision – $LWE_{q,m=Q\cdot\ell,n,\alpha}$.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 3: Lattice-Based Crypto. III Mar 2014

Public-Key Encryption from LWE

Now we convert from symmetric-key to public-key encryption - Regev's cryptosystem (2005).

- Ideas (take $\ell = 1$):
 - Observation: $\operatorname{Enc}(\vec{s},m) = \operatorname{Enc}(\vec{s},0) + [\vec{0}^T,m] \mod q$.
 - Recall: $[\vec{a}^T, \vec{a}^T \cdot \vec{s} + e + m] = [\vec{a}^T, \vec{a}^T \cdot \vec{s} + \vec{e}] + [\vec{0}^T, m]$
 - Attempt 1: Publish p = Enc(s, 0) in public key, add [0^T, m] during encryption.
 - But... is it secure???
 - Attempt 2: Publish several $\vec{p}_i = \text{Enc}(\vec{s}, 0)$'s in public key. Combine them linearly with random coefficients r_i during encryption to a 'fresh' $c = \text{Enc}(\vec{s}, 0)!$

Observation: For small
$$r_i$$
's,
 $r_1 \cdot \text{Enc}(\vec{s}, 0) + r_2 \cdot \text{Enc}(\vec{s}, 0) = \text{Enc}(\vec{s}, 0)$
• $r_1 \cdot [\vec{a}_1^T, \vec{a}_1^T \cdot \vec{s} + e_1] + r_2 \cdot [\vec{a}_2^T, \vec{a}_2^T \cdot \vec{s} + e_2] = [\vec{a}^T, \vec{a}^T \cdot \vec{s} + e],$
where $\vec{a} = r_1 \cdot \vec{a}_1 + r_2 \cdot \vec{a}_2, e = r_1 \cdot e_1 + r_2 \cdot e_2.$

- Correctness: $|e| > |e_1|, |e_2|$, but 'small' if r_1, r_2 'small'.
- Security: \vec{a} is \approx uniformly random if r_i 's have enough entropy!

Public-Key Encryption from LWE

Definition

Regev's LWE-based Public-Key Encryption:

- Key Generation KG: Fix integers q, m, n. Pick secret key $\vec{s} \leftarrow U(\mathbb{Z}_{q}^{n})$. Publish public key (A, \vec{p}) , where:
 - $A \leftrightarrow U(\mathbb{Z}_{a}^{m \times n}).$
 - $\vec{p} = A \cdot \vec{s} + \vec{e} \mod q$ with $\vec{e} \leftarrow \chi^m_{\alpha q}$.
- Encryption Enc: Fix integers t, B_r . Given message $m \in \mathbb{Z}_t$ and public key (A, \vec{p}) ,

Compute:

$$\vec{a}^T = \vec{r}^T \cdot A, c = \vec{r}^T \cdot \vec{p} + \lceil q/t \rfloor \cdot m \mod q.$$

• Return ciphertext (\vec{a}^T, c) .

• Decryption – Dec: Given ciphertext (\vec{a}^T, c) and secret key \vec{s} ,

• Compute
$$c'_{II} = c - \vec{a}^T \cdot \vec{s} \mod q$$

• Compute $c'' \in \mathbb{Z}_q$ by rounding c' to the nearest multiple of $\lceil q/t \rceil \mod q$.

• Return plaintext
$$m = \frac{c''}{\lceil q/t \rceil}$$

Public-Key Encryption from LWE: Correctness

- In ciphertext, $c = \vec{r}^T \cdot A \cdot \vec{s} + \vec{r}^T \cdot \vec{e} + \lceil q/t \rfloor \cdot m \mod q = \vec{a}^T \cdot \vec{s} + e + \lceil q/t \rfloor \cdot m \mod q$, where $e = \vec{r}^T \cdot \vec{e}$.
- Decryption recovers c' = e + [q/t] · m mod q. As in symmetric-key scheme, rounding succeeds to recover m if the 'new' noise e is sufficiently small:

$$e < \frac{1}{2} \cdot \lceil q/t \rfloor \approx \frac{q}{2t}$$

- If noise distribution $\chi_{\alpha q}$ of \vec{e} coordinates is (rounded) normal distribution with std. dev. αq , distribution of 'new' noise $e = \vec{r}^T \cdot \vec{e}$ (neglecting rounding) is, for a fixed \vec{r} , also normal distributed with std. dev. $\alpha q \cdot \|\vec{r}\|$. And the expected value of $\|\vec{r}\|$ is $\approx \sqrt{B_r(B_r + 1)m/3}$, which is a good approximation to $\|\vec{r}\|$ with high probability.
- Hence error probability per coordinate pe is probability that a standard normal distributed random variable (mean 0, std. dev 1) exceeds ¹/_{2to} in magnitude:

$$p_e \approx 2 \cdot \left(1 - \Phi(\frac{1}{2t\alpha} \cdot \sqrt{\frac{3}{B_r(B_r+1)m}})\right)$$

where $\boldsymbol{\Phi}$ is the cumulative distribution function of normal distribution.

So: p_e 'small' when the following correctness condition holds:

$$t << \frac{1}{2\alpha} \cdot \sqrt{\frac{3}{B_r(B_r+1)m}}.$$

Since B_r can be 1, lose a factor of $O(\sqrt{m})$ in t (or q for a given t) versus the symmetric-key case.

Q: Why is it secure, assuming that Decision-LWE is hard?

A: As in symmetric-key case, a security reduction!

Build an efficient Dec-LWE algorithm D, given an efficient attack algorithm B breaking encryption scheme.

Q: What do we mean by 'B breaks the encryption scheme'? **Possible A:** Similar to symmetric-key case – IND-CPA definition for public-key encryption IND-CPA Attack model in the public-key case for attacker B:

- Challenger runs Key Gen. algorithm of encryption scheme, obtains a secret key s and a public key (A, p). The public key is given to B.
- No need to give B access to an 'encryption oracle': B can simulate such an oracle by itself, using the public key. B outputs a pair of 'challenge messages' m^{*}₀, m^{*}₁.

• Challenger picks a random bit $b \leftarrow U(\{0, 1\})$, computes 'challenge ciphertext' $(\hat{a^*}^T, c^*) = \operatorname{Enc}((A, \vec{p}), \vec{m}_b^*)$ for the challenge message selected by b, and gives $(\hat{a^*}^T, c^*)$ to B.

• Attacker B outputs a guess b' for the bit b chosen by the challenger. Attacker 'wins' game if b' = b.

Definition

IND-CPA security (at 2^{λ} security level): Any attack B with run-time $T(B) \leq 2^{\lambda}$ wins game with prob. $\leq 1/2 + 1/2^{\lambda}$.

Mar 2014

In security reduction, we need a way of measuring closeness of probability distributions. In crypto., usually use statistical distance between distributions.

Definition

For two probability distributions D_1 and D_2 on a discrete set S, the statistical distance $\Delta(D_1, D_2)$ is defined as:

$$\Delta(D_1, D_2) \stackrel{\text{def}}{=} \frac{1}{2} \cdot \sum_{x \in S} |D_1(x) - D_2(x)|.$$

• Δ is always between 0 ($D_1 = D_2$) and 1 (D_1 and D_2 never output the same value).

Why is stat. distance useful? Because no attack algorithm (function) can increase it!

Lemma

Let D_1 , D_2 be any two distributions, and A be any algorithm. Then:

$$|\Pr_{x \leftrightarrow D_1}[A(x) = 1] - \Pr_{x \leftrightarrow D_2}[A(x) = 1]| \le \Delta(D_1, D_2).$$

Ron Steinfeld

FIT5124 Advanced Topics in SecurityLecture 3: Lattice-Based Crypto. III Mar 2014

Security Reduction from Decision-LWE Suppose there was an efficient IND-CPA attack algorithm B, breaking 2^{λ} security of Regev's encryption scheme:

• B runs in time T_B and wins IND-CPA game with probability $1/2 + \varepsilon_B$ (with $T_B < 2^{\lambda}$ and $\varepsilon_B > 1/2^{\lambda}$).

Then, given a *Decision* – $LWE_{q,m,n,\alpha}$ instance (q, n, A, \vec{y}) , Dec-LWE algorithm D works as follows:

- D runs attacker B on input public key $(A, \vec{p} = \vec{y})$.
- When B makes its challenge query (m₀^{*}, m₁^{*}), D behaves like the real challenger: chooses a random bit b, picks coefficient vector r ← U({-B_r,...,B_r}^m) and computes:

$$\vec{a^*}^T = \vec{r}^T \cdot A, c^* = \vec{r}^T \cdot \vec{y} + \lceil q/t \rfloor \cdot m_b \mod q.$$

D returns challenge ciphertext $(\vec{a^*}^T, c^*)$.

• When B returns a guess b' for b, D returns 'Real' if b' = b, and 'Rand' if $b' \neq b$.

Security Reduction from Decision-LWE (cont.) **Q:** Why does D work? Consider two LWE scenarios for \vec{y} :

- 'Real' LWE scenario, y = A ⋅ s + e public key and challenge ciphertext returned by D to B are computed exactly as in the real IND-CPA game, so B wins game with good probability 1/2 + ε_B, hence D returns 'Real' with prob. 1/2 + ε_B.
- 'Random' LWE scenario, $\vec{p} = \vec{y}$ is independent and uniformly random in \mathbb{Z}_q^m . Use following 'Leftover Hash Lemma' (LHL):

Lemma

Let $C \leftarrow U(\mathbb{Z}_q^{m \times (n+1)})$ and $\vec{r} \leftarrow U(\{-B_r, \ldots, B_r\}^m)$. If the following LHL condition holds:

$$(2B_r+1)^m >> q^{n+1},$$
 (more precisely: $(2B_r+1)^m \geq 2^{2(\lambda+1)} \cdot q^{n+1})$

then the probability distribution P of the pair $(C, \vec{r}^T \cdot C \mod q)$ is statistically indistinguishable from the uniform distribution $U = U(\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^{n+1})$. More precisely, the statistical distance $\Delta(P, U)$ between the probability distributions P, U is at most

$$\frac{1}{2}\cdot\sqrt{\frac{q^{n+1}}{(2B_r+1)^m}}$$

Mar 2014

'Random' LWE scenario (cont.): $\vec{p} = \vec{y}$ is independent and uniformly random in \mathbb{Z}_q^m

- If the distribution P of (A, y, a^{*} ^T = r^T + A, r^T + y) was exactly U = U(Z^{m×n}_q × Zⁿ⁺¹_q), then (as in symmetric-key case), ciphertext (a^{*} ^T, c^{*} = r^T + y + [q/t] + m_b) is independent of b and public key y (contains no information on b), and hence D returns 'Real' with prob. 1/2.
- By LHL, $\Delta(P, U) \leq \frac{1}{2} \cdot \sqrt{\frac{q^{n+1}}{(2B_r+1)^m}} = \delta$. By LHL condition, $\delta \leq 1/2^{\lambda+1}$ is negligible, so from property of statistical distance (wk 4 tute), D returns 'Real' with probability $\leq 1/2 + \delta \leq 1/2 + 1/2^{\lambda+1}$.
- **So:** Distinguishing advantage of D $\geq \varepsilon_B - 1/2^{\lambda+1} \geq 1/2^{\lambda} - 1/2^{\lambda+1} \geq 1/2^{\lambda+1}.$ Also, run-time of D is (approx.) run-time of B, i.e. $< 2^{\lambda}$. **Conclusion:** Contradiction with $2^{\lambda+1}$ security of Decision-LWE!

Theorem

If LHL condition holds, IND-CPA security of Regev's encryption scheme is at least as hard as $Decision - LWE_{q,m,n,\alpha}$.

Ron Steinfeld

Choice of Parameters for Regev's Encryption Scheme The LHL condition tells us how large *m* should be chosen:

$$(2B_r+1)^m \ge 2^{2(\lambda+1)} \cdot q^{n+1} \text{ implies } m \ge \frac{(n+1) \cdot \log q + 2 \cdot (\lambda+1)}{\log(2B_r+1)}$$

Q: How to choose the other parameters of Regev's scheme?

A: Based on the security level and LWE problem's relation to lattice problems (next lecture!)