
FIT5124 Advanced Topics in Security

Lecture 2: Lattice-Based Crypto. II

Ron Steinfeld
Clayton School of IT

Monash University

March 2016

Acknowledgements: Some figures sourced from Oded Regev’s Lecture Notes on ‘Lattices in Computer Science’, Tel

Aviv University, Fall 2004, and Vinod Vaikuntanathan’s course on Lattices in Computer Science, MIT.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 1/21

Plan for this lecture (and next)

How secure is lattice-based cryptography?
Known cryptanalysis algorithms to break γ-SVP / SIS
problem: LLL algorithm and variants.
Average-case hardness for SIS based on worst-case hardness of
γ-SVP (only mention).
How to choose parameters for Ajtai’s hash function for a given
security level?

How to construct lattice-based encryption schemes?
(start this week if sufficient time)

Learning with Errors (LWE) Problem and Bounded Distance
Decoding (BDD) problem
Symmetric-key encryption from LWE
Public-key encryption from LWE: Regev’s cryptosystem (2005).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 2/21

Security of Lattice-Based Cryptography

Q1: How should we choose the parameters q,m, n, d of
Ajtai’s hash function?

Q2: How hard (secure) is SIS Problem?

We attempt to answer two subquestions for Q2 and return to Q1:

Q2a: How hard is it to solve γ-SVP problem for an arbitrary
lattice?

Q2b: How hard is it to solve γ-SVP for random q-ary lattices
L⊥q (A), i.e. how do we know that SIS Problem is hard on
‘average’? Is there a (non-negligible) subset of ‘weak’
matrices A for which problem is much easier than solving
γ-SVP for arbitrary lattices?

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 3/21

Security of Lattice-Based Cryptography

Q2a: How hard is it to solve γ-SVP problem for an arbitrary
lattice?
Ans: Need to understand complexity of state of the art algorithms
for these problems.
A difficult, not fully understood topic!
We briefly overview of two classical algorithms (foundation for
current state of the art γ-SVP algorithm known as BKZ):

LLL lattice reduction algorithm (γ = 2O(n), time = nO(1)).

Enumeration algorithms, aka Fincke-Pohst enumeration
(γ = 1, time = 2O(n log n)) – only mention.

Optimized γ vs. time tradeoff combination of those used in BKZ
(aka Schnorr’s block reduction) algorithm (state of the art alg. for
γ = nc , time ≈ 2O(n/c) – only mention.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 4/21

Algorithms for γ-SVP: LLL
Recall: a given lattice L has an infinite number of bases B, but all
have the same FP volume det L:

Most bases B are ‘bad’: long lattice vectors, far from
orthogonal, FP of B is very ‘skewed’

Some bases B are ‘good’: short lattice vectors, close to
orthogonal, FP of B is ≈ an n-dim. cube of side length
≈ det L1/n.

How to transform a ‘bad’ basis to a better one?
Use a lattice basis reduction algorithm: Given a basis B of lattice
L, outputs a ‘better’ basis B ′ for L

Algorithm performs a sequence of unimodular operations on B
Add integer multiple of one column to another column
Swap columns

Each op. preserves basis property,‘improves’ basis slightly

First efficient (poly-time) reduction algorithm: LLL (Lenstra
Lenstra Lovasz, 1982)

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 5/21

Algorithms for γ-SVP: LLL
Idea of LLL: Make basis vectors ‘approximately’ orthogonal.

GSO of a basis B tells us how ‘orthogonal’ the basis vectors
are to each other:
~b∗i = ~bi −

∑i−1
j=1 µi ,j · ~b∗j , where µi ,j =

〈~bi ,~b∗j 〉
〈~b∗j ,~b

∗
j 〉

.

What does ‘approximately’ orthogonal ~bi ’s mean?
Small projection component: ‘small’ relative projection

length µi ,j of ~bi along previous ~b∗j ’s (j < i):
LLL property 1: |µi,j | ≤ 1/2 for all i = 1, . . . , n and j < i .

Large orthogonal component: ’large’ remaining component

‖~b∗i+1‖ of ~bi+1 after removing components along ~b∗j ’s

(j < i + 1):

LLL property 2: ‖~b∗
i+1 + µi+1,i

~b∗
i ‖2 ≥ δ · ‖~b∗

i ‖2 for all
i = 1, . . . , n − 1 for some constant δ (1/4 ≤ δ < 1).

Goal of LLL: Perform elementary unimodular operations until
both properties are satisfied.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 6/21

Algorithms for γ-SVP: LLL

Definition

A basis B for lattice L is δ-LLL reduced if both LLL properties 1
and 2 are satisfied.

LLL Algorithm. Given n-dim. input basis B, do:
Start Step: Compute GSO B∗ for B.

Length Reduction Step: (comment: after this step, LLL property 1 will be satisfied)

for i = 2 to n do

for j = i − 1 to 1 do

Update ~bi ← ~bi − ci,j~bj , where ci,j =

⌈
〈~bi ,~b∗j 〉
〈~b∗j ,

~b∗j 〉

⌋
.

Swap Step: (comment: after this step, LLL property 2 will be satisfied by ~bi ,~bi+1)

If there is an i such that LLL property 2 is not satisfied (i.e.

‖~b∗
i+1 + µi+1,i

~b∗
i ‖ < δ · ‖~b∗

i ‖), then:

Swap ~bi and ~bi+1

Go back to Start Step.

Else, Return δ-LLL reduced basis B.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 7/21

Algorithms for γ-SVP: LLL
Why does LLL work - Property 1?

After length red. Step, LLL property 1 (|µi ,j | ≤ 1/2) is
satisfied:

Throughout length red., GSO vectors ~b∗
i ’s do not change!

Adding a multiple of ~bj for j < i to ~bi only changes the
projection of ~bi along ~bj , not the orthogonal component ~b∗i .

Recall (first lecture): ~bi ’s coordinate matrix along the rotated

coordinate system of normalized GSO vectors ~b∗
i /‖~b∗

i ‖:
‖~b∗

1‖ ‖~b∗
1‖ · µ2,1 · · · ‖~b∗

1‖ · µn,1

0 ‖~b∗
2‖ · · · ‖~b∗

2‖ · µn,2

0 0 · · · ‖~b∗
3‖ · µn,3

...
...

...
...

0 0 · · · ‖~b∗
n‖

jth iteration of inner for loop: subtract integer multiple ci,j =

⌈
µi,j

⌋
of jth column above

(~bj) from ith column ~bi – jth entry of ith column changes from ‖~b∗i ‖ · µi,j to

‖~b∗i ‖ · (µi,j −
⌈
µi,j

⌋
). So: µi,j → µ′i,j = µi,j −

⌈
µi,j

⌋
so |µ′i,j | ≤ 1/2.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 8/21

Algorithms for γ-SVP: LLL
Why does LLL work - Property 2? After swap step, LLL
property 2 (‖~b∗i+1 + µi+1,i

~b∗i ‖ ≥ δ · ‖~b∗i ‖) is satisfied:

Overall effect of swap step, swapping ~bi and ~bi+1:
~b∗
j (and µi,j) for j < i stay the same: ~b∗new

j = ~b∗
j for j < i .

~b∗
i and ~b∗

i+1 + µi+i,i
~b∗
i swap so property 2 at i is satisfied after

swap:
~b∗newi = ~b∗i+1 + µi+i,i

~b∗i .
~b∗newi+1 + µnew

i+i,i
~b∗newi = ~b∗i

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 9/21

Algorithms for γ-SVP: LLL
Why does LLL work - Run time?
Swap step may invalidate property 1 while length reduction step
may invalidate property 2, but...
It can be shown that this cannot continue for very long - eventually
both properties 1 and 2 are satisfied and algorithm terminates!

Theorem

The number of (length reduce, swap) iterations of LLL on input
basis B before termination is at most

n2 · log(max
i
‖~bi‖)/ log(1/

√
δ).

For any constant 1/4 < δ < 1, this is polynomial in bit length of
the algorithm input. Moreover, the run-time for each iteration is
also polynomial in the input bit length. Overall, run-time is
polynomial in input length — LLL is efficient!.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 10/21

Algorithms for γ-SVP: LLL
How can we use LLL to solve γ-SVP?
Intuitively, since LLL outputs an ‘approximately orthogonal’ basis
for L, the basis vectors should be relatively short lattice vectors. A
practical approach to solve γ-SVP for L(B):

Run LLL on B and get a δ-LLL reduced LLL basis B ′ for L.

Output the shortest vector among the n basis vectors in B ′.

What approx. factor γ does this achieve? Not easy to predict
theoretically!
But LLL properties of B ′ allow us to prove an upper bound on big
γ can be.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 11/21

Algorithms for γ-SVP: LLL
Theoretical Upper bound on LLL Approx. factor γ. If B is δ-LLL
reduced basis for L, LLL property 2 is:

‖~b∗i+1 + µi+1,i
~b∗i ‖

2 ≥ δ · ‖~b∗i ‖
2

By Pythagoras, LHS above is just ‖~b∗i+1‖
2 + µ2

i+1,i‖~b
∗
i ‖

2, so we can rearrange to get:

‖~b∗i+1‖
2 ≥ (δ − µ2

i+1,i) · ‖~b
∗
i ‖

2
.

By LLL property 1, µ2
i+1,i ≤ 1/4 so we get the successive ratio bound:

‖~b∗i+1‖
2

‖~b∗i ‖
2
≥ (δ − 1/4), for all i ≥ 2.

Since the ratio of norms of all pairs of successive ~b∗i ’s is at least δ − 1/4, it immediately implies

‖~b∗n ‖
2

‖~b∗1 ‖
2
≥ (δ − 1/4)n−1

,

or ‖~b1‖ = ‖~b∗1 ‖ ≤ (1/(δ − 1/4))(n−1)/2 · ‖~b∗n ‖. But it can be shown that ‖~b∗n ‖ ≤ λ1(L), so

‖~b1‖ ≤ (1/(δ − 1/4))(n−1)/2 · λ1(L). Conclusion (take δ = 3/4):

Theorem

The LLL algorithm solves (in polynomial time) γ-SVP for n-dim. lattices, with γ ≤ 2(n−1)/2. Can also be shown

that Hermite Factor γHF
def
=

‖~b1‖
det(L)1/n

≤ 2(n−1)/4.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 12/21

Algorithms for γ-SVP: LLL

LLL Approx. factor γ in practice. For ‘random’ lattices, LLL
experimentally performs much better than the theoretical upper
bound γ ≤ 2(n−1)/2.
Experiments (see, e.g., [NS06]) show that for random lattices, LLL
reduced bases tend to have, on average,

‖~b∗i+1‖2

‖~b∗i ‖2
≈ 1.04, for all i ≥ 2.

Consequently, for random lattices, LLL can (experimentally) solve
γ-SVP for γ ≈ 1.04n−1. (and Hermite Factor γHF ≈ 1.02n−1).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 13/21

Algorithms for γ-SVP: Enumeration

How to compute the shortest vector (γ = 1). If we really want
the shortest vector, can always use a brute force search approach –
enumeration algorithms.

Enumerate all lattice vectors in a volume that is guaranteed to
contain the shortest vector.

Will not go into details here.

Drawback: enumeration run-time is (at least) exponential in
dimension n!
Current state of the art enumeration algorithms (aka Fincke-Phost
/ Kannan) take time 2O(n log n).
Remark: Other algorithms (sieve algorithms – Ajtai et al 2001, Voronoi
algorithms - Micciancio et al 2010, Gaussian sampling algorithms – Regev
et al 2015) exist that trade off exponential memory 2O(n) for 2O(n) time.

Large memory tends to make these algorithms less practical (but
still being improved)...

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 14/21

Algorithms for γ-SVP: BKZ

Trading off larger time for smaller γ. In late 1980s, Schnorr
introduced a hierarchy of generalizations of LLL, called Block
Korkhine Zolotarev (BKZ) algorithm Trades off larger run-time for
smaller approx. factor γ – currently state of the art for attacking
lattice-based crypto:

Combines ideas of LLL and enumeration algorithms.

Idea: introduce a ‘block size’ parameter k ∈ {2, 3, ..., n} into
LLL: generalize the 2× 2 GSO submatrix blocks in LLL
property 2

Gradual ‘interpolation’ between the extremes of LLL (k = 2,
γ = 2O(n), T = nc) and enumeration (k = n, γ = 1,
T = 2O(n log n)).

For general block size k , variants of BKZ [HPS’11] provably
achieve γ(k) ≤ k(n−1)/(k−1) with run-time nc · kO(k).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 15/21

Complexity of γ-SVP: Asymptotic Summary

Summary: State of the art (BKZ) asymptotic γ-time
tradeoff. For future reference, we have the following
(approximate) asymptotic relations:

For security against attacks running time T = 2λ – security parameter λ, need

2λ = 2O(k log k)
, so λ = O(k log k).

At this run-time, achieve γHF = δ(k)n with δ(k) = k1/(k−1) ≈ k1/k , so

log γHF = (n/k) log k, so log γHF = Ω(
n log2 λ

λ
).

Overall, get asymptotic lattice ’rule of thumb’ for γ-SVP (using
BKZ):

n = Ω(
λ

log2 λ
· log γHF) ≈ λ · log γHF .

Remark: Need lattice dim. n proportional to product of
bit-security level λ and log. approx. factor.

log γHF factor is a reason behind relatively long keys in
lattice-based cryptosystems...

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 16/21

Complexity of γ-SVP: Numerical Summary

Numerical estimates of optimized BKZ time versus γ. Chen
and Nguyen [CN11] gave numerical estimates for Hermite Factor
and time for ‘random’ lattices versus block size for optimized
(state of the art) BKZ variants:

Can be used to estimate concrete numerical parameters for
cryptosystems!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 17/21

Parameters for Ajtai’s hash Function: Hardness of SIS

Recall: Ajtai’s hash function collision-resistance security
(provably) depends on hardness of SIS problem: finding vectors of
length ≤ β = 2d

√
m in SIS lattice Lq(A) (dimension m,

det Lq(A) = qn – see tute).
How to choose parameters q, n,m, d for given security parameter λ
based on hardness of SIS?
To get security level ≈ 2λ (enum. cost) against BKZ attacks,
possible approach (see [MR08] survey):

Assume attacker runs BKZ with block length k such that
enumeration cost is ≈ 2λ (e.g. use [CN11] tables).

Find corresponding BKZ Hermite factor γHF = δm (e.g. use
[CN11] tables).

Attacker can compute a non-zero vector ~v in SIS lattice Lq(A)
of norm ≤ ` = min(q, δm · det(Lq(A))1/m). Breaks SISβ if
min(q, δm · det(Lq(A))1/m) ≤ β.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 18/21

Parameters for Ajtai’s hash Function: Hardness of SIS

Attack optimization ([MR08]): Attacker uses only a subset of m′ ≤ m of columns of A, where m′ is

chosen to an optimal value m∗ minimizing `(m′) = min(q, δm
′
· det(Lq(A))1/m′). Turns out that

m∗ =
√

n log q
log δ

and `(m∗) = min(q, 22
√

n log q log δ).

For SISβ hardness, choose hash parameters such that `(m∗) > β∗ = 2d
√
m∗, so:

q ≥ β∗ = 2d
√
m∗ and n ≥

log2(β∗)

4 log q log(δ)
.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 19/21

Ajtai’s hardness proof for SIS

Why do we think that SIS is ‘hard on average’ (no weak instances
occur with non-negligible probability)?
Ajtai’s average-case to worst-case connection Theorem (1996,
improved by Gentry et al [GPV08]).

Theorem

If there is an algorithm A that solves SISq(n),m(n),β(n) in poly-time,
for some non-negligible fraction of input matrices G ∈ Zmn×n

q ,

Then there is an algorithm B that solves γ(n)-SIVP in polynomial
time for all input lattices L of dimension n with:

γ = O(β
√

n), q(n) = ω(γ
√

log n).

γ-SIVP is a variant of γ-SVP that asks for a γ approximation to the n linearly independent shortest lattice
vectors.

We won’t study this proof, but it gives us a theoretical foundation for security of SIS.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 20/21

References referred to in the Slides

NS’06 P.Q. Nguyen and D. Stehlé, LLL on the Average, In
Proceedings of ANTS 2006.

GN’08 N. Gama and P.Q. Nguyen, Predicting Lattice Reduction, In
Proceedings of EUROCRYPT 2008.

CN’11 Y. Chen and P.Q. Nguyen, BKZ 2.0: Better Lattice Security
Estimates, In Proceedings of ASIACRYPT 2011.

MR’08 D. Micciancio and O. Regev. Lattice-Based Cryptography.
Book Chapter in Post Quantum Cryptography, D.J. Bernstein;
J. Buchmann; E. Dahmen (eds.), February 2009.

GPV’08 C. Gentry and C. Peikert and V. Vaikuntanathan. Trapdoors
for Hard Lattices and New Cryptographic Constructions. In
Proceedings of STOC 2008.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 21/21

