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Plan for this lecture (and next)

How secure is lattice-based cryptography?
Known cryptanalysis algorithms to break γ-SVP / SIS
problem: LLL algorithm and variants.
Average-case hardness for SIS based on worst-case hardness of
γ-SVP (only mention).
How to choose parameters for Ajtai’s hash function for a given
security level?

How to construct lattice-based encryption schemes?
(start this week if sufficient time)

Learning with Errors (LWE) Problem and Bounded Distance
Decoding (BDD) problem
Symmetric-key encryption from LWE
Public-key encryption from LWE: Regev’s cryptosystem (2005).
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Security of Lattice-Based Cryptography

Q1: How should we choose the parameters q,m, n, d of
Ajtai’s hash function?

Q2: How hard (secure) is SIS Problem?

We attempt to answer two subquestions for Q2 and return to Q1:

Q2a: How hard is it to solve γ-SVP problem for an arbitrary
lattice?

Q2b: How hard is it to solve γ-SVP for random q-ary lattices
L⊥q (A), i.e. how do we know that SIS Problem is hard on
‘average’? Is there a (non-negligible) subset of ‘weak’
matrices A for which problem is much easier than solving
γ-SVP for arbitrary lattices?
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Security of Lattice-Based Cryptography

Q2a: How hard is it to solve γ-SVP problem for an arbitrary
lattice?
Ans: Need to understand complexity of state of the art algorithms
for these problems.
A difficult, not fully understood topic!
We briefly overview of two classical algorithms (foundation for
current state of the art γ-SVP algorithm known as BKZ):

LLL lattice reduction algorithm (γ = 2O(n), time = nO(1)).

Enumeration algorithms, aka Fincke-Pohst enumeration
(γ = 1, time = 2O(n log n)) – only mention.

Optimized γ vs. time tradeoff combination of those used in BKZ
(aka Schnorr’s block reduction) algorithm (state of the art alg. for
γ = nc , time ≈ 2O(n/c) – only mention.
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Algorithms for γ-SVP: LLL
Recall: a given lattice L has an infinite number of bases B, but all
have the same FP volume det L:

Most bases B are ‘bad’: long lattice vectors, far from
orthogonal, FP of B is very ‘skewed’

Some bases B are ‘good’: short lattice vectors, close to
orthogonal, FP of B is ≈ an n-dim. cube of side length
≈ det L1/n.

How to transform a ‘bad’ basis to a better one?
Use a lattice basis reduction algorithm: Given a basis B of lattice
L, outputs a ‘better’ basis B ′ for L

Algorithm performs a sequence of unimodular operations on B
Add integer multiple of one column to another column
Swap columns

Each op. preserves basis property,‘improves’ basis slightly

First efficient (poly-time) reduction algorithm: LLL (Lenstra
Lenstra Lovasz, 1982)
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Algorithms for γ-SVP: LLL
Idea of LLL: Make basis vectors ‘approximately’ orthogonal.

GSO of a basis B tells us how ‘orthogonal’ the basis vectors
are to each other:
~b∗i = ~bi −

∑i−1
j=1 µi ,j · ~b∗j , where µi ,j =

〈~bi ,~b∗j 〉
〈~b∗j ,~b

∗
j 〉

.

What does ‘approximately’ orthogonal ~bi ’s mean?
Small projection component: ‘small’ relative projection

length µi ,j of ~bi along previous ~b∗j ’s (j < i):
LLL property 1: |µi,j | ≤ 1/2 for all i = 1, . . . , n and j < i .

Large orthogonal component: ’large’ remaining component

‖~b∗i+1‖ of ~bi+1 after removing components along ~b∗j ’s

(j < i + 1):

LLL property 2: ‖~b∗
i+1 + µi+1,i

~b∗
i ‖2 ≥ δ · ‖~b∗

i ‖2 for all
i = 1, . . . , n − 1 for some constant δ (1/4 ≤ δ < 1).

Goal of LLL: Perform elementary unimodular operations until
both properties are satisfied.
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Algorithms for γ-SVP: LLL

Definition

A basis B for lattice L is δ-LLL reduced if both LLL properties 1
and 2 are satisfied.

LLL Algorithm. Given n-dim. input basis B, do:
Start Step: Compute GSO B∗ for B.

Length Reduction Step: (comment: after this step, LLL property 1 will be satisfied)

for i = 2 to n do

for j = i − 1 to 1 do

Update ~bi ← ~bi − ci,j~bj , where ci,j =

⌈
〈~bi ,~b∗j 〉
〈~b∗j ,

~b∗j 〉

⌋
.

Swap Step: (comment: after this step, LLL property 2 will be satisfied by ~bi ,~bi+1)

If there is an i such that LLL property 2 is not satisfied (i.e.

‖~b∗
i+1 + µi+1,i

~b∗
i ‖ < δ · ‖~b∗

i ‖), then:

Swap ~bi and ~bi+1

Go back to Start Step.

Else, Return δ-LLL reduced basis B.
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Algorithms for γ-SVP: LLL
Why does LLL work - Property 1?

After length red. Step, LLL property 1 (|µi ,j | ≤ 1/2) is
satisfied:

Throughout length red., GSO vectors ~b∗
i ’s do not change!

Adding a multiple of ~bj for j < i to ~bi only changes the
projection of ~bi along ~bj , not the orthogonal component ~b∗i .

Recall (first lecture): ~bi ’s coordinate matrix along the rotated

coordinate system of normalized GSO vectors ~b∗
i /‖~b∗

i ‖:
‖~b∗

1‖ ‖~b∗
1‖ · µ2,1 · · · ‖~b∗

1‖ · µn,1

0 ‖~b∗
2‖ · · · ‖~b∗

2‖ · µn,2

0 0 · · · ‖~b∗
3‖ · µn,3

...
...

...
...

0 0 · · · ‖~b∗
n‖


jth iteration of inner for loop: subtract integer multiple ci,j =

⌈
µi,j

⌋
of jth column above

(~bj ) from ith column ~bi – jth entry of ith column changes from ‖~b∗i ‖ · µi,j to

‖~b∗i ‖ · (µi,j −
⌈
µi,j

⌋
). So: µi,j → µ′i,j = µi,j −

⌈
µi,j

⌋
so |µ′i,j | ≤ 1/2.
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Algorithms for γ-SVP: LLL
Why does LLL work - Property 2? After swap step, LLL
property 2 (‖~b∗i+1 + µi+1,i

~b∗i ‖ ≥ δ · ‖~b∗i ‖) is satisfied:

Overall effect of swap step, swapping ~bi and ~bi+1:
~b∗
j (and µi,j) for j < i stay the same: ~b∗new

j = ~b∗
j for j < i .

~b∗
i and ~b∗

i+1 + µi+i,i
~b∗
i swap so property 2 at i is satisfied after

swap:
~b∗newi = ~b∗i+1 + µi+i,i

~b∗i .
~b∗newi+1 + µnew

i+i,i
~b∗newi = ~b∗i

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 9/21



Algorithms for γ-SVP: LLL
Why does LLL work - Run time?
Swap step may invalidate property 1 while length reduction step
may invalidate property 2, but...
It can be shown that this cannot continue for very long - eventually
both properties 1 and 2 are satisfied and algorithm terminates!

Theorem

The number of (length reduce, swap) iterations of LLL on input
basis B before termination is at most

n2 · log(max
i
‖~bi‖)/ log(1/

√
δ).

For any constant 1/4 < δ < 1, this is polynomial in bit length of
the algorithm input. Moreover, the run-time for each iteration is
also polynomial in the input bit length. Overall, run-time is
polynomial in input length — LLL is efficient!.
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Algorithms for γ-SVP: LLL
How can we use LLL to solve γ-SVP?
Intuitively, since LLL outputs an ‘approximately orthogonal’ basis
for L, the basis vectors should be relatively short lattice vectors. A
practical approach to solve γ-SVP for L(B):

Run LLL on B and get a δ-LLL reduced LLL basis B ′ for L.

Output the shortest vector among the n basis vectors in B ′.

What approx. factor γ does this achieve? Not easy to predict
theoretically!
But LLL properties of B ′ allow us to prove an upper bound on big
γ can be.
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Algorithms for γ-SVP: LLL
Theoretical Upper bound on LLL Approx. factor γ. If B is δ-LLL
reduced basis for L, LLL property 2 is:

‖~b∗i+1 + µi+1,i
~b∗i ‖

2 ≥ δ · ‖~b∗i ‖
2

By Pythagoras, LHS above is just ‖~b∗i+1‖
2 + µ2

i+1,i‖~b
∗
i ‖

2, so we can rearrange to get:

‖~b∗i+1‖
2 ≥ (δ − µ2

i+1,i ) · ‖~b
∗
i ‖

2
.

By LLL property 1, µ2
i+1,i ≤ 1/4 so we get the successive ratio bound:

‖~b∗i+1‖
2

‖~b∗i ‖
2
≥ (δ − 1/4), for all i ≥ 2.

Since the ratio of norms of all pairs of successive ~b∗i ’s is at least δ − 1/4, it immediately implies

‖~b∗n ‖
2

‖~b∗1 ‖
2
≥ (δ − 1/4)n−1

,

or ‖~b1‖ = ‖~b∗1 ‖ ≤ (1/(δ − 1/4))(n−1)/2 · ‖~b∗n ‖. But it can be shown that ‖~b∗n ‖ ≤ λ1(L), so

‖~b1‖ ≤ (1/(δ − 1/4))(n−1)/2 · λ1(L). Conclusion (take δ = 3/4):

Theorem

The LLL algorithm solves (in polynomial time) γ-SVP for n-dim. lattices, with γ ≤ 2(n−1)/2. Can also be shown

that Hermite Factor γHF
def
=

‖~b1‖
det(L)1/n

≤ 2(n−1)/4.
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Algorithms for γ-SVP: LLL

LLL Approx. factor γ in practice. For ‘random’ lattices, LLL
experimentally performs much better than the theoretical upper
bound γ ≤ 2(n−1)/2.
Experiments (see, e.g., [NS06]) show that for random lattices, LLL
reduced bases tend to have, on average,

‖~b∗i+1‖2

‖~b∗i ‖2
≈ 1.04, for all i ≥ 2.

Consequently, for random lattices, LLL can (experimentally) solve
γ-SVP for γ ≈ 1.04n−1. (and Hermite Factor γHF ≈ 1.02n−1).
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Algorithms for γ-SVP: Enumeration

How to compute the shortest vector (γ = 1). If we really want
the shortest vector, can always use a brute force search approach –
enumeration algorithms.

Enumerate all lattice vectors in a volume that is guaranteed to
contain the shortest vector.

Will not go into details here.

Drawback: enumeration run-time is (at least) exponential in
dimension n!
Current state of the art enumeration algorithms (aka Fincke-Phost
/ Kannan) take time 2O(n log n).
Remark: Other algorithms (sieve algorithms – Ajtai et al 2001, Voronoi
algorithms - Micciancio et al 2010, Gaussian sampling algorithms – Regev
et al 2015) exist that trade off exponential memory 2O(n) for 2O(n) time.

Large memory tends to make these algorithms less practical (but
still being improved)...
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Algorithms for γ-SVP: BKZ

Trading off larger time for smaller γ. In late 1980s, Schnorr
introduced a hierarchy of generalizations of LLL, called Block
Korkhine Zolotarev (BKZ) algorithm Trades off larger run-time for
smaller approx. factor γ – currently state of the art for attacking
lattice-based crypto:

Combines ideas of LLL and enumeration algorithms.

Idea: introduce a ‘block size’ parameter k ∈ {2, 3, ..., n} into
LLL: generalize the 2× 2 GSO submatrix blocks in LLL
property 2

Gradual ‘interpolation’ between the extremes of LLL (k = 2,
γ = 2O(n), T = nc) and enumeration (k = n, γ = 1,
T = 2O(n log n)).

For general block size k , variants of BKZ [HPS’11] provably
achieve γ(k) ≤ k(n−1)/(k−1) with run-time nc · kO(k).
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Complexity of γ-SVP: Asymptotic Summary

Summary: State of the art (BKZ) asymptotic γ-time
tradeoff. For future reference, we have the following
(approximate) asymptotic relations:

For security against attacks running time T = 2λ – security parameter λ, need

2λ = 2O(k log k)
, so λ = O(k log k).

At this run-time, achieve γHF = δ(k)n with δ(k) = k1/(k−1) ≈ k1/k , so

log γHF = (n/k) log k, so log γHF = Ω(
n log2 λ

λ
).

Overall, get asymptotic lattice ’rule of thumb’ for γ-SVP (using
BKZ):

n = Ω(
λ

log2 λ
· log γHF ) ≈ λ · log γHF .

Remark: Need lattice dim. n proportional to product of
bit-security level λ and log. approx. factor.

log γHF factor is a reason behind relatively long keys in
lattice-based cryptosystems...
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Complexity of γ-SVP: Numerical Summary

Numerical estimates of optimized BKZ time versus γ. Chen
and Nguyen [CN11] gave numerical estimates for Hermite Factor
and time for ‘random’ lattices versus block size for optimized
(state of the art) BKZ variants:

Can be used to estimate concrete numerical parameters for
cryptosystems!
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Parameters for Ajtai’s hash Function: Hardness of SIS

Recall: Ajtai’s hash function collision-resistance security
(provably) depends on hardness of SIS problem: finding vectors of
length ≤ β = 2d

√
m in SIS lattice Lq(A) (dimension m,

det Lq(A) = qn – see tute).
How to choose parameters q, n,m, d for given security parameter λ
based on hardness of SIS?
To get security level ≈ 2λ (enum. cost) against BKZ attacks,
possible approach (see [MR08] survey):

Assume attacker runs BKZ with block length k such that
enumeration cost is ≈ 2λ (e.g. use [CN11] tables).

Find corresponding BKZ Hermite factor γHF = δm (e.g. use
[CN11] tables).

Attacker can compute a non-zero vector ~v in SIS lattice Lq(A)
of norm ≤ ` = min(q, δm · det(Lq(A))1/m). Breaks SISβ if
min(q, δm · det(Lq(A))1/m) ≤ β.
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Parameters for Ajtai’s hash Function: Hardness of SIS

Attack optimization ([MR08]): Attacker uses only a subset of m′ ≤ m of columns of A, where m′ is

chosen to an optimal value m∗ minimizing `(m′) = min(q, δm
′
· det(Lq(A))1/m′ ). Turns out that

m∗ =
√

n log q
log δ

and `(m∗) = min(q, 22
√

n log q log δ).

For SISβ hardness, choose hash parameters such that `(m∗) > β∗ = 2d
√
m∗, so:

q ≥ β∗ = 2d
√
m∗ and n ≥

log2(β∗)

4 log q log(δ)
.
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Ajtai’s hardness proof for SIS

Why do we think that SIS is ‘hard on average’ (no weak instances
occur with non-negligible probability)?
Ajtai’s average-case to worst-case connection Theorem (1996,
improved by Gentry et al [GPV08]).

Theorem

If there is an algorithm A that solves SISq(n),m(n),β(n) in poly-time,
for some non-negligible fraction of input matrices G ∈ Zmn×n

q ,

Then there is an algorithm B that solves γ(n)-SIVP in polynomial
time for all input lattices L of dimension n with:

γ = O(β
√

n), q(n) = ω(γ
√

log n).

γ-SIVP is a variant of γ-SVP that asks for a γ approximation to the n linearly independent shortest lattice
vectors.

We won’t study this proof, but it gives us a theoretical foundation for security of SIS.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 2: Lattice-Based Crypto. II Mar 2014 20/21



References referred to in the Slides

NS’06 P.Q. Nguyen and D. Stehlé, LLL on the Average, In
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