
Lecture Notes
Cryptographic Protocols

Version 1.2

February 2, 2016

Berry Schoenmakers

Department of Mathematics and Computer Science,

Technical University of Eindhoven,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

l.a.m.schoenmakers@tue.nl

berry@win.tue.nl

Cryptographic Protocols (2DMI00)
www.win.tue.nl/~berry/2DMI00/

Spring 2016

mailto:l.a.m.schoenmakers@tue.nl
mailto:berry@win.tue.nl
http://www.win.tue.nl/~berry/2DMI00/

Available online: updated lecture notes and matching lecture slides (printable handout).

ii

http://www.win.tue.nl/~berry/2DMI00/LectureNotes.pdf
http://www.win.tue.nl/~berry/2DMI00/LectureSlides.pdf
http://www.win.tue.nl/~berry/2DMI00/LectureSlides-handout.pdf

PREFACE

As a motivating example for the cryptographic protocols covered in these lecture notes
consider the Dutch tradition of “Sinterklaaslootjes trekken,” internationally known as “Se-
cret Santa,” in which a group of people anonymously exchange small gifts—often accom-
panied by poems quite a few rhyming couplets long. A lot of websites are available to
help people organize such drawings over the internet, see, e.g., sinterklaaslootjes.net,
lootjestrekken.nl, and the “Secret Santa” service at elfster.com. The interesting ques-
tion is how to do this securely! That is, without trusting the website or program providing
this service, but with the guarantee (a) that indeed a random drawing is performed, corre-
sponding to a random permutation without fixed points, and (b) such that each participant
learns nothing except who he or she is a Secret Santa for.

More serious applications of such privacy-protecting cryptographic protocols are emerging
in lots of places. For instance, over the last two decades many electronic elections using
advanced cryptography have already been conducted. Other applications involve the use of
anonymous cash, anonymous credentials, group signatures, secure auctions, etc., all the way
to secure (multiparty) computation.

To this end we study cryptographic techniques that go beyond what we like to refer to
as Crypto 1.0. Basically, Crypto 1.0 concerns encryption and authentication of data dur-
ing communication, storage, and retrieval. Well-known Crypto 1.0 primitives are symmetric
(secret-key) primitives such as stream ciphers, block ciphers, and message authentication
codes; asymmetric (public-key) primitives such as public-key encryption, digital signatures,
and key-exchange protocols; and, keyless primitives such as cryptographic hash functions.
The common goal is to protect against malicious outsiders, say, attacking storage or commu-
nication media.

On the other hand, Crypto 2.0 additionally aims at protection against malicious insiders,
that is, against attacks by the other parties engaged in the protocol that one is running.
Thus, Crypto 2.0 concerns computing with encrypted data, partial information release of
data, and hiding the identity of data owners or any link with them. Well-known Crypto 2.0
primitives are homomorphic encryption, secret sharing, oblivious transfer, blind signatures,
zero-knowledge proofs, and secure two/multi-party computation, which will all be treated to
a certain extent in these lecture notes.

The treatment throughout will be introductory yet precise at various stages. Familiarity
with basic cryptography is assumed. We focus on asymmetric techniques for cryptographic
protocols, also considering proofs of security for various constructions. The topic of zero-
knowledge proofs plays a central role. In particular, Σ-protocols are treated in detail as a
primary example of the so-called simulation paradigm, which forms the basis of much of
modern cryptography.

The first and major version of these lecture notes was written in the period of December
2003 through March 2004. Many thanks to all the students and readers over the years for their
feedback, both directly and indirectly, which helped to finally produce the first full version of
this text.

Berry Schoenmakers

iii

http://www.sinterklaaslootjes.net/
http://www.lootjestrekken.nl/
http://www.elfster.com/

Contents

Preface iii
Contents iv

1 Introduction

1.1 Terminology 1
1.2 Preliminaries 2

Number Theory — Group Theory — Probability Theory — Complexity Theory

1.3 Assumptions 6
Discrete Log and Diffie-Hellman Assumptions — Indistinguishability — Random Self-Reducibility — Random Oracle Model

1.4 Bibliographic Notes 14

2 Key Exchange Protocols

2.1 Diffie-Hellman Key Exchange 16
Basic Protocol — Passive Attacks — A Practical Variant — Aside: ElGamal Encryption

2.2 Authenticated Key Exchange 20
Man-in-the-Middle Attacks — A Protocol Using Digital Signatures — A Protocol Using Password-Based Encryption

2.3 Bibliographic Notes 22

3 Commitment Schemes

3.1 Definition 23
3.2 Examples 24

Using a Cryptographic Hash Function — Using a Discrete Log Setting — Impossibility Result

3.3 Homomorphic Commitments 26
3.4 Bibliographic Notes 26

4 Identification Protocols

4.1 Definitions 27
4.2 Password-based Schemes 28
4.3 One-Way Hash Chains 29
4.4 Basic Challenge-Response Protocols 29

Using Symmetric Encryption — Using Symmetric Authentication — Using Asymmetric Encryption — Using Asymmetric Authentication

4.5 Zero-knowledge Identification Protocols 31
Schnorr Zero-knowledge Protocol — Schnorr Protocol — Guillou-Quisquater Protocol

4.6 Witness Hiding Identification Protocols 37
Okamoto Protocol

4.7 Bibliographic Notes 39

iv

5 Zero-Knowledge Proofs

5.1 Σ-Protocols 40
5.2 Composition of Σ-Protocols 44

Parallel Composition — AND-Composition — EQ-Composition — OR-Composition — NEQ-Composition

5.3 Miscellaneous Constructions 51
5.4 Non-interactive Σ-Proofs 54

Digital Signatures from Σ-Protocols — Proofs of Validity — Group Signatures

5.5 Bibliographic Notes 59

6 Threshold Cryptography

6.1 Secret Sharing 60
Shamir Threshold Scheme

6.2 Verifiable Secret Sharing 62
Feldman VSS — Pedersen VSS

6.3 Threshold Cryptosystems 66
Threshold ElGamal Cryptosystem

6.4 Bibliographic Notes 68

7 Secure Multiparty Computation

7.1 Electronic Voting 69
7.2 Based on Threshold Homomorphic Cryptosystems 72
7.3 Based on Oblivious Transfer 73
7.4 Bibliographic Notes 75

8 Blind Signatures

8.1 Definition 76
8.2 Chaum Blind Signature Scheme 77
8.3 Blind Signatures from Σ-Protocols 78
8.4 Bibliographic Notes 79

Bibliography

v

List of Figures

2.1 Three-pass encryption? 21

4.1 Four basic challenge-response schemes 30
4.2 Schnorr’s zero-knowledge protocol 32
4.3 Schnorr’s identification protocol 35
4.4 Guillou-Quisquater’s identification protocol 36
4.5 Okamoto’s identification protocol 38

5.1 Σ-protocol for relation R 41
5.2 Transformed Σ-protocol for relation R 42
5.3 Insecure variant of Schnorr’s protocol 43
5.4 Parallel composition of Schnorr’s protocol 44
5.5 AND-composition of Schnorr’s protocol 45
5.6 Alternative to AND-composition of Schnorr’s protocol? 46
5.7 EQ-composition of Schnorr’s protocol 47
5.8 OR-composition of Schnorr’s protocol 48
5.9 NEQ-composition of Schnorr’s protocol 50

5.10 Σ-protocol for {(A,B;x, y, z) : A = gxhy ∧B = gxyh(1−x)z ∧ x ∈ {0, 1}} 52
5.11 Alternative to Okamoto’s protocol? 54
5.12 Parametrized insecure variant of Schnorr’s protocol 56

7.1 Matching without embarrassments 72

7.2
(

2
1

)
-OT protocol 74

8.1 Chaum’s blind signature protocol 78
8.2 Schnorr-based blind signature protocol 78

vi

CHAPTER 1

Introduction

1.1 TERMINOLOGY

The field of cryptology is generally divided into the two mutually dependent fields of cryp-
tography and cryptanalysis. Cryptography concerns the design of (mathematical) schemes
related to information security which resist cryptanalysis, whereas cryptanalysis is the study
of (mathematical) techniques for attacking cryptographic schemes.

The following distinction is commonly made between cryptographic algorithms, crypto-
graphic protocols, and cryptographic schemes.

DEFINITION 1.1 A cryptographic algorithm is a well-defined transformation, which on
a given input value produces an output value, achieving certain security objectives. A cryp-
tographic protocol is a distributed algorithm describing precisely the interactions between
two or more entities, achieving certain security objectives. A cryptographic scheme (or
system, or application) is a suite of related cryptographic algorithms and/or cryptographic
protocols, achieving certain security objectives.

Entities interact in a cryptographic protocol by exchanging messages between each other
over specific communication channels. A basic distinction can be made between point-to-point
channels connecting two entities, and broadcast channels connecting a sender to multiple re-
ceivers. Communication channels are often assumed to provide particular security guarantees.
For example, a private channel (or, secure channel) is a point-to-point channel employing some
form of encryption to protect against eavesdropping and, possibly, employing some form of
authentication to protect against tampering with messages. A channel without any protec-
tion against eavesdropping and tampering is sometimes called a public channel (or, insecure
channel). Another example is a bulletin board which is a public authenticated broadcast
channel, allowing a sender to broadcast authenticated messages. A communication model
describes what type of channels are available between which pairs or sets of entities. The
communication model hides the implementation details of the channels, which may be far
from trivial and which may incur substantial cost.

The following distinction is commonly made between passive and active attacks. Both
types of attack are defined in terms of an adversary. The adversary represents the coalition
formed by an attacker and/or one or more of the entities taking part in the cryptographic
scheme. The entities under control of the adversary are said to be corrupt and the remaining
entities are said to be honest. The attacker itself may be thought of as an outsider, while the
corrupt entities can be viewed as insiders. It is essential that the attacker and the corrupt

1

2 CHAPTER 1 Introduction

entities may coordinate their efforts.

DEFINITION 1.2 In a passive attack, the adversary does not interfere with the execution
of the algorithms and protocols comprising a cryptographic scheme. A passive adversary
merely eavesdrops on the communication between the entities, and records all information it
has access to, including all private information of the corrupt entities.1In an active attack,
the adversary may—in addition—interfere with the communication within a cryptographic
scheme by deleting, injecting, or modifying messages; moreover, the adversary may have the
corrupt entities deviate from their prescribed behavior in an arbitrary way.2

Hence, a passive attack on an encryption scheme corresponds to the classical case of
an eavesdropper. The classical man-in-the-middle attack on a key exchange protocol is an
example of an active attack.

1.2 PRELIMINARIES

Throughout these lecture notes, basic familiarity with the following notions from mathematics
and theoretical computer science is assumed: number theory, group theory, probability theory,
and complexity theory. Particularly relevant aspects of these theories are highlighted below.

1.2.1 NUMBER THEORY

Throughout, n is a positive integer. We use Zn to denote the set of integers modulo n (or, more
formally, the set of residue classes modulo n), and we write Z∗n = {x ∈ Zn : gcd(x, n) = 1} for
the set of integers that have a multiplicative inverse modulo n. Further, we write φ(n) = |Z∗n|
for Euler’s phi function, for which we have φ(n) = n

∏
p|n(1 − 1/p) as a basic fact, implying

that φ(n) can be computed efficiently given the prime divisors of n. As another useful fact,
we mention that n/φ(n) = O(log log n).

EXERCISE 1.3 Prove the elementary bound n/φ(n) = O(log n), using that the number of
distinct prime factors ω(n) of n is O(log n), and that the ith smallest prime factor of n is at
least i+ 1 for i = 1, 2, . . . , ω(n).

1.2.2 GROUP THEORY

Throughout, Gn denotes a cyclic group of finite order n, written multiplicatively. Usually,
but not necessarily, we assume the group order n to be prime. Recall that any group of prime
order is cyclic, and that any finite cyclic group is abelian (commutative). For h ∈ Gn, we let
ord(h) denote its order, hence ord(h) | n. Any g ∈ Gn with ord(g) = n is a generator of Gn,
that is, Gn = 〈g〉 = {gx : x ∈ Zn}, or equivalently, the elements of Gn can be enumerated as
1, g, g2, g3, . . . , gn−1, and gn = 1.

The discrete logarithm (or, discrete log) of an element h ∈ 〈g〉 is defined as the
unique integer x ∈ Zn satisfying h = gx. We write x = logg h. For the following groups it is
commonly assumed that computing discrete logarithms is hard for appropriate values of n.

EXAMPLE 1.4 Take Gn = Z∗p, for a prime p. Then Gn is a cyclic group of order n = p− 1.
Clearly, n is not prime (unless p = 3, of course).

1Passively corrupt entities are also known as semi-honest (or, honest-but-curious) entities.
2Actively corrupt entities are also known as malicious (or, cheating) entities.

§1.2 Preliminaries 3

More generally, one may take Gn = F∗q, the multiplicative group of a finite field of order
q = pr, for some positive integer r. Then Gn is a cyclic group of order n = q − 1.

EXAMPLE 1.5 Take Gn = 〈g〉, where g denotes an element of order p′ in Z∗p, with p′ | p− 1,
p, p′ prime. Then Gn is a cyclic group of order n = p′. Clearly, n is prime in this case.

More generally, one may take Gn = 〈g〉, where g denotes an element of order p′ in F∗q,
with p′ | q − 1.

EXAMPLE 1.6 Consider E(Fq), the finite group of points of an elliptic curve over Fq, which
is usually written additively, with the point at infinity O as identity element. Then E(Fq) is
abelian, but not necessarily cyclic. In general, E(Fq) is isomorphic to Zn1×Zn2, where n1 | n2

and n1 | q− 1. So, E(Fq) is cyclic if and only if n1 = 1. Hence, one may take Gn = E(Fq) if
n1 = 1; otherwise, one may take a cyclic subgroup of E(Fq) for Gn.

Finally, as a convenient notation, we let 〈g〉∗ = {gx : x ∈ Z∗n} denote the set of all
generators of 〈g〉. Clearly, |〈g〉∗| = φ(n), which is the number of generators of any cyclic
group of order n.

EXERCISE 1.7 Show that for any h ∈ 〈g〉, the following conditions are equivalent:

(i) h ∈ 〈g〉∗,

(ii) ord(h) = n,

(iii) 〈h〉 = 〈g〉,

(iv) 〈h〉∗ = 〈g〉∗.

EXERCISE 1.8 Show that aloghb = blogha for any a, b ∈ 〈g〉 and h ∈ 〈g〉∗.

1.2.3 PROBABILITY THEORY

Throughout, we will use basic notions from probability theory, such as sample space, events,
probability distributions, and random variables. We will only be concerned with discrete
random variables. Specifically, for a (nonempty) finite set V , we write X ∈R V to define X
as a random variable distributed uniformly at random on V , that is, Pr[X = v] = 1/|V | for
all v ∈ V . Furthermore, the notion of statistical distance plays a fundamental role.

DEFINITION 1.9 The statistical distance3 ∆(X;Y) between random variables X and Y
is defined as

∆(X;Y) =
1

2

∑
v∈V

∣∣Pr[X = v]− Pr[Y = v]
∣∣,

where V denotes the set of possible values for X and Y . For our purposes, it suffices to
consider the case that V is finite.

Note that Definition 1.9 can also be read as the statistical distance between the (proba-
bility) distributions of X and Y . So ∆(X;Y) = 0 if and only if the probability distributions
of X and Y are identical, that is, Pr[X = v] = Pr[Y = v] for all v ∈ V . In general, this is not

3This quantity is also known as the (total) variation(al) distance, Kolmogorov distance, trace distance, or
L1-distance. Sometimes the scaling factor 1

2
is omitted.

4 CHAPTER 1 Introduction

equivalent to equality of X and Y as random variables: for example, let X ∈R {0, 1} and let
Y = 1−X, then ∆(X;Y) = 0 but clearly X 6= Y (in fact, Pr[X = Y] = 0).

The statistical distance is a bounded metric in the following sense.

PROPOSITION 1.10 For random variables X, Y , and Z:

(i) 0 ≤ ∆(X;Y) ≤ 1, “nonnegativity” and “boundedness”

(ii) ∆(X;Y) = 0 if and only if ∀v∈V Pr[X = v] = Pr[Y = v], “identical distributions”

(iii) ∆(X;Y) = ∆(Y ;X), “symmetry”

(iv) ∆(X;Z) ≤ ∆(X;Y) + ∆(Y ;Z). “triangle inequality”

Clearly, ∆(X;X) = 0. Note that ∆(X;Y) = 1 if and only if X and Y are disjoint, that
is, Pr[X = v]Pr[Y = v] = 0 for all v ∈ V .

Alternative ways to characterize or compute statistical distance are as follows.

PROPOSITION 1.11 For random variables X and Y :

(i) ∆(X;Y) =
∑

v∈V +

(
Pr[X = v]−Pr[Y = v]

)
, with V +={v ∈ V : Pr[X=v] > Pr[Y=v]},

(ii) ∆(X;Y) =
∑

v∈V
(
Pr[X = v] .− Pr[Y = v]

)
, with x .−y = max(x−y, 0) (“x monus y”),

(iii) ∆(X;Y) = 1−
∑

v∈V min
(
Pr[X = v],Pr[Y = v]

)
,

(iv) ∆(X;Y) = maxW⊆V
∣∣Pr[X ∈W]− Pr[Y ∈W]

∣∣.
EXERCISE 1.12 Prove Proposition 1.10.

EXERCISE 1.13 Prove Proposition 1.11.

EXERCISE 1.14 For n, d ≥ 1, consider distributions X and Y given by

X = {u : u ∈R {0, . . . , n− 1},
Y = {u+ d : u ∈R {0, . . . , n− 1}}.

Compute ∆(X;Y), assuming d ≤ n. Also, what is ∆(X;Y) if d > n?

EXERCISE 1.15 For n ≥ 1, consider distributions X,Y, Z given by

X = {u : u ∈R {0, . . . , n− 1}},
Y = {2u : u ∈R {0, . . . , n− 1}},
Z = {2u+ 1 : u ∈R {0, . . . , n− 1}}.

Show that ∆(Y ;Z) = 1. Show that ∆(X;Y) = ∆(X;Z) = 1/2 for even n, and also determine
∆(X;Y) and ∆(X;Z) for odd n.

EXERCISE 1.16 For n ≥ 1, determine ∆(X;Y), where X ∈R Zn and Y ∈R Z∗n.

§1.2 Preliminaries 5

EXERCISE 1.17 For n prime, let h and M0 be arbitrary, fixed elements of Gn = 〈g〉, h 6= 1.
Consider distributions X, Y , and Z given by

X = {(A,B) : A ∈R 〈g〉, B ∈R 〈g〉},
Y = {(gu, huM) : u ∈R Zn,M ∈R 〈g〉},
Z = {(gu, huM0) : u ∈R Zn}.

Show that ∆(X;Y) = 0 and ∆(Y ;Z) = 1 − 1/n. Show that also ∆(X;Z) = 1 − 1/n (e.g.,
using triangle inequalities).

EXERCISE 1.18 For n ≥ d ≥ 1, let random variable X take on values in {0, . . . , d− 1}, and
set U ∈R {0, . . . , n− 1}. Show that ∆(U ;X + U) ≤ (d− 1)/n, and that this bound is tight.

The result of Exercise 1.18 implies that ∆(U ;X + U) is small if d � n. For instance, if
one sets n = d2k, we see that the statistical distance between U and X +U is less than 1/2k,
hence approaches 0 exponentially fast as a function of k. In other words, one can mask an
integer value X from a bounded range {0, . . . , d − 1} by adding a uniformly random integer
U from an enlarged range {0, . . . , n− 1}. This way one can do one-time pad encryption with
integers, where X is the plaintext, U is the one-time pad, and X + U is the ciphertext.

1.2.4 COMPLEXITY THEORY

Familiarity with basic notions from (computational) complexity theory is assumed. Examples
are the notion of a Turing machine and the complexity classes P and NP. Below, we briefly
discuss the essential role of randomized complexity in cryptology.

Taking Church’s thesis for granted, Turing machines are powerful enough to describe any
kind of algorithm. A basic Turing machine consists of a (finite) control part and an (in-
finite) tape used to store data. Many variations exist, e.g., Turing machines with multiple
tapes (possibly divided into input tapes, work tapes, output tapes, etc.), with one-way infinite
vs. two-way infinite tapes, tapes with several heads instead of just one, and so on. The basic
Turing machine, however, already captures the essence of an algorithm, and thereby defines
the borderline between problems which are computable and which are not (and, which lan-
guages are decidable or not, acceptable or not). In particular, the computability of a problem
does not depend on whether a Turing machine is deterministic, hence on each step moves
from its current configuration to a unique successor configuration, or non-deterministic,
hence moves on each step to one of several possible successor configurations.

When efficiency is taken into account, the situation changes quite dramatically. To define
efficient algorithms one uses some form of time-bounded Turing machine. A Turing machine
is said to be polynomial time if it halts within p(|x|) steps on any input string x, where p
denotes some polynomial and |x| denotes the length of string x. The complexity class P is
then defined as the set of all problems which can be solved by a deterministic polynomial
time Turing machine. In terms of class P one may say that a problem is feasible (can be
handled efficiently) exactly when it is in P.

The issue with characterizing efficiency in terms of P is that the feasibility of a prob-
lem is thus considered in terms of its worst-case complexity only. For cryptographic and for
cryptanalytic purposes, however, it is much more relevant to consider average case complex-
ity instead. The critical notion is that of a probabilistic Turing machine, which behaves

6 CHAPTER 1 Introduction

similarly to a non-deterministic Turing machine, except that on each step it chooses the suc-
cessor configuration uniformly at random from the possible ones. Hence, an operational way
of viewing a probabilistic Turing machine is to think of one of its tapes as the “random tape,”
which is a read-only tape containing uniformly random bits. A problem is now considered
feasible if it can be solved by a probabilistic polynomial time (p.p.t.) Turing machine.4

The algorithms constituting a cryptographic scheme are thus all understood to be p.p.t.
algorithms. This is important because efficient algorithms for tasks such as primality testing5

and prime number generation are probabilistic (randomized). More importantly, the adver-
sary is also viewed as a p.p.t. algorithm, which means that it does not suffice to show that the
security of a cryptographic scheme is guaranteed if an underlying problem (e.g., the discrete
log problem) is not in P. Instead we need problems that are not in the complexity class
BPP, which are those problems that can be solved with bounded-error by a p.p.t. Turing
machine. Without going into details, we mention that a decision problem is said to be solved
with bounded-error by a p.p.t. Turing machine if for every yes-instance x, the probability
(over all internal random choices) of accepting it is at least 2/3, and if for every no-instance
x, this probability is at most 1/3.6 Throughout, we will thus say that a problem is “easy” (or,
“feasible”) if it is in BPP, hence can be solved by a p.p.t. algorithm, and we say it is “hard”
(or, “infeasible”) otherwise. Thus, “hard” means that any efficient algorithm only succeeds
with negligibly small probability in computing the correct output.

1.3 ASSUMPTIONS

1.3.1 DISCRETE LOG AND DIFFIE-HELLMAN ASSUMPTIONS

The following three hardness assumptions are commonly used in cryptographic schemes based
on a discrete log setting.

DEFINITION 1.19 The Discrete Logarithm (DL) assumption for group 〈g〉 states that it is
hard to compute x given a random group element gx.

DEFINITION 1.20 The (Computational) Diffie-Hellman (DH) assumption for group 〈g〉
states that it is hard to compute gxy given random group elements gx and gy.

DEFINITION 1.21 The Decisional Diffie-Hellman (DDH) assumption for group 〈g〉 states
that it is hard to distinguish gxy from a random group element gz given random group
elements gx and gy.

4Throughout these lecture notes we ignore the distinction between strict polynomial time and expected
polynomial time. For strict polynomial time, a probabilistic Turing machine must halt on each input after a
polynomial number of steps (as a function of the input size), whereas for expected polynomial time this only
needs to hold for each input on the average (averaged over all random choices made by the Turing machine).

5The Miller-Rabin test is a well-known example. Note that until the discovery of the AKS algorithm in
2002, it was not known that primality testing is actually in P.

6The role of BPP should not be confused with the role of the complexity class NP, which is defined as
the set of all problems which can be solved by a non-deterministic polynomial time Turing machine. Here,
the time needed by a non-deterministic Turing machine on a given input string is defined as the least number
of steps before it halts (as if one—by magic—always makes the right choice to solve a problem instance as
quickly as possible). The big open question is whether P = NP, or not. If indeed P 6= NP, then it would follow
that the so-called NP-complete problems take more than polynomial time to solve in the worst case—but, this
says nothing about the average case.

§1.3 Assumptions 7

Evidently, these assumptions satisfy: DL⇐ DH⇐ DDH. Therefore it is better if a scheme
can be proved secure under just the DL assumption. It turns out, however, that in many
cases the security can only be proved under the DH assumption, or even only under the DDH
assumption.7

1.3.2 INDISTINGUISHABILITY

DEFINITION 1.22 A nonnegative function f : N→ R is called negligible if for every γ ∈ N
there exists a k0 ∈ N such that for all k ≥ k0, f(k) ≤ 1/kγ.

A typical example of a negligible function is 2−k, which converges exponentially fast to 0.

Other examples are 2−
√
k and k− log k. However, 1/k and 1/k100 are clearly not negligible.

Note that limk→∞ f(k) = 0 if f is negligible; the converse does not hold in general.

DEFINITION 1.23 Let X = {Xi}i∈I and Y = {Yi}i∈I be two families of random variables
(or probability distributions) indexed by I. Suppose that |Xi| = |Yi| for all i ∈ I, and that
these sizes are polynomial in |i|. Then X and Y are said to be:

(i) perfectly indistinguishable if ∆(Xi;Yi) = 0 (hence identically distributed);

(ii) statistically indistinguishable if ∆(Xi;Yi) is negligible as a function of |i|;

(iii) computationally indistinguishable if ∆(D(Xi);D(Yi)) is negligible as a function
of |i| for every p.p.t. algorithm D with output in {0, 1} (binary distinguisher).

Equivalently, X and Y are computationally indistinguishable if for every distinguisher D,
the advantage AdvD(Xi, Yi) is negligible,8 where

AdvD(Xi, Yi) =
∣∣Pr[D(Xi) = 1]− Pr[D(Yi) = 1]

∣∣.
This equivalence follows from Proposition 1.11(iv): clearly, AdvD(Xi, Yi) ≤ ∆(D(Xi);D(Yi));
moreover, for any distinguisher D, one obtains a distinguisher D′ with AdvD′(Xi, Yi) =
∆(D(Xi);D(Yi)) by defining D′(v) = 1 if and only if D(v) ∈ W , where W is any set maxi-
mizing |Pr[D(Xi) ∈W]− Pr[D(Yi) ∈W]|.

In practice, one often uses binary distinguishers D with output D(v) ∈ {0, 1}.

EXERCISE 1.24 Prove that AdvD(Xi, Yi)=∆(D(Xi);D(Yi)) for any binary distinguisher D.

EXERCISE 1.25 Prove that computational indistinguishability is implied by statistical in-
distinguishability. Hint: use Proposition 1.11(iv).

A more formal version of the DDH assumption, stated in terms of computationally indis-
tinguishable distributions, can now be rendered as follows. The DDH assumption is obtained

7In some cases one can prove that the DH assumption is equivalent to the DL assumption. The DDH
assumption, though, appears to be stronger than the DH assumption. In fact, there exist groups based on
elliptic curves for which the DDH assumption is false, while the DH problem is considered hard. For these
particular groups the DDH problem is actually easy.

8A nonnegative family {fi ∈ R}i∈I of values is called negligible (as a function of |i|) if for every γ ∈ N there
exists a k0 ∈ N such that for all i ∈ I with |i| ≥ k0, fi ≤ 1/|i|γ , cf. Definition 1.22.

8 CHAPTER 1 Introduction

by letting index set I correspond to groups Gn = 〈g〉. For i = 〈g〉, the size |i| is defined as
the length of the bit string representing 〈g〉. The distributions are given by

X〈g〉 = {(gx, gy, gxy) : x, y ∈R Zn}, “DH triples”

Y〈g〉 = {(gx, gy, gz) : x, y, z ∈R Zn, z 6= xy}. “non-DH triples”

The DDH assumption is then that X〈g〉 and Y〈g〉 are computationally indistinguishable.

Note that it does not matter whether we take distribution Y〈g〉 or the related distribution
Y ′〈g〉 given by

Y ′〈g〉 = {(gx, gy, gz) : x, y, z ∈R Zn}, “random triples”

since these two distributions are statistically indistinguishable. This can be verified as follows,
using Definition 1.9:

∆(Y ;Y ′) = 1
2

(∑
x,y,z∈Zn

∣∣Pr[Y = (gx, gy, gz)]− Pr[Y ′ = (gx, gy, gz)]
∣∣)

= 1
2

(∑
x,y,z∈Zn,z 6=xy

∣∣Pr[Y = (gx, gy, gz)]− Pr[Y ′ = (gx, gy, gz)]
∣∣

+
∑

x,y,z∈Zn,z=xy
∣∣Pr[Y = (gx, gy, gz)]− Pr[Y ′ = (gx, gy, gz)]

∣∣)
= 1

2

(
(n3 − n2)

∣∣ 1
n3−n2 − 1

n3

∣∣+ n2
∣∣0− 1

n3

∣∣)
= 1/n.

Since n is exponentially large, the statistical distance is negligible. By saying that n is
exponentially large, we mean that log2 n ≈ k for some security parameter k. Typically,
k = 256 is recommended for discrete log based cryptography. (For RSA based cryptography,
see also Exercise 1.34, k is typically the bit length of the RSA modulus m, e.g., k = 2048
or larger. Note that one cannot simply compare these security parameters across different
cryptosystems.)

Note that the statistical distance between X〈g〉 and Y〈g〉 is given by

∆(X;Y) = 1
2

(∑
x,y,z∈Zn

∣∣Pr[X = (gx, gy, gz)]− Pr[Y = (gx, gy, gz)]
∣∣)

= 1
2

(∑
x,y,z∈Zn,z=xy

∣∣Pr[X = (gx, gy, gz)]− Pr[Y = (gx, gy, gz)]
∣∣

+
∑

x,y,z∈Zn,z 6=xy
∣∣Pr[X = (gx, gy, gz)]− Pr[Y = (gx, gy, gz)]

∣∣)
= 1

2

(
n2
∣∣ 1
n2 − 0

∣∣+ (n3 − n2)
∣∣0− 1

n3−n2

∣∣)
= 1.

Hence, ∆(X;Y) is maximal, which is no surprise as X〈g〉 and Y〈g〉 are disjoint. Yet, the
distributions cannot be distinguished from each other, under the DDH assumption. By the
triangle inequality for statistical distance, it follows that

∆(X;Y ′) ≥ ∆(X;Y)−∆(Y ;Y ′) = 1− 1/n,

hence also the distance between X〈g〉 and Y ′〈g〉 is non-negligible.

EXERCISE 1.26 Check that actually ∆(X;Y ′) = 1− 1/n.

§1.3 Assumptions 9

1.3.3 RANDOM SELF-REDUCIBILITY

The following notion of random self-reducible problems is sufficiently general for our purposes.
Recall that one commonly refers to the input of a problem and a corresponding output as a
(problem) instance and its solution.

DEFINITION 1.27 A problem is called (perfectly) random self-reducible if any instance I
of the problem can be solved by these three steps:

1. Transform instance I into a uniformly random instance I ′.

2. Solve instance I ′.

3. Extract the solution for I from the solution for I ′.

Only steps 1 and 3 are required to run in polynomial time.

For cryptographic purposes, it is a good sign if a presumably hard problem is random self-
reducible. In that case, it is excluded that even though the problem is hard in the worst-case,
the problem is actually easy on the average. To see why, consider a random self-reducible
problem and suppose that the problem is easy on the average. Then there cannot be any hard
instances at all, since any such instance can be solved by solving a transformed, uniformly
random instance due to random self-reducibility.

PROPOSITION 1.28 Any random self-reducible problem that is hard in the worst-case is
also hard on the average.

It is reassuring that the standard discrete log and Diffie-Hellman problems are all random
self-reducible, where these problems are formulated as follows, for any group 〈g〉 of order n:

DL problem: compute x, given gx with x ∈ Zn.

DH problem: compute gxy, given gx, gy with x, y ∈ Zn.

DDH problem: distinguish gxy from gz, given gx, gy with x, y, z ∈ Zn, z − xy ∈ Z∗n.

Note that for n prime the DDH problem corresponds to distinguishing the (disjoint) distri-
butions X〈g〉 = {(gx, gy, gxy) : x, y ∈R Zn} and Y〈g〉 = {(gx, gy, gz) : x, y, z ∈R Zn, z 6= xy}, as
explained in Section 1.3.2.

The above problem formulations allow for arbitrary—potentially, worst-case—problem
instances. In cryptography, however, we generally need to allow for random problem instances,
cf. the hardness assumptions in Definitions 1.19–1.21. The following proposition implies that
these assumptions are not stronger than their worst-case cousins.

PROPOSITION 1.29 The DL, DH, and DDH problems are random self-reducible.

PROOF For the DL problem, any given instance h = gx with x ∈ Zn is solved as follows:

1. Transform h into a uniformly random instance h′ = hgu with u ∈R Zn.

2. Solve instance h′ yielding x′ = logg h
′.

3. Extract the solution as x = logg h = x′ − u mod n.

Clearly, h′ is distributed uniformly on 〈g〉.
For the DH problem, any given instance I = (gx, gy) with x, y ∈ Zn is solved as follows:

10 CHAPTER 1 Introduction

1. Transform I into a uniformly random I ′ = (gx
′
, gy

′
) = (gxgt, gygu) with t, u ∈R Zn.

2. Solve instance I ′ yielding gx
′y′ = g(x+t)(y+u) = gxy+xu+ty+tu.

3. Extract the solution as gxy = gx
′y′/((gx)u(gy)tgtu).

Note that indeed the pair (gx
′
, gy

′
) is distributed uniformly on 〈g〉 × 〈g〉.

For the DDH problem, random self-reducibility amounts to transforming each triple given
as input to the (binary) distinguisher into a uniformly-random triple of the “same type.”
Given any instance I = (gx, gy, gz), we do so as follows:

1. Transform I into I ′ = ((gx)sgt, gygu, (gz)s(gx)su(gy)tgtu) with s ∈R Z∗n and t, u ∈R Zn.

2. Solve instance I ′ yielding bit b′.

3. Output b = b′.

First, note that s ∈R Z∗n can be generated in polynomial time by testing on average n/φ(n) =
O(log log n) uniformly random values s ∈ Zn until gcd(s, n) = 1; see also Section 1.2.1.

Next, let I ′ = (gx
′
, gy

′
, gz

′
). Then instances I and I ′ are of the same type as

z′ − x′y′ = zs+ xsu+ yt+ tu− (xs+ t)(y + u) = (z − xy)s,

hence z = xy if and only if z′ = x′y′, using that s ∈ Z∗n.

Furthermore, if z = xy, triple I ′ is uniform among all DH triples (gx
′
, gy

′
, gx

′y′), indepen-
dent of I. That is, for any values v, w ∈ Zn:

Pr[x′ = v, y′ = w, z′ = vw] =
1

n2
.

Similarly, if z − xy ∈ Z∗n, then s, t, u are determined uniquely by s = (z′ − x′y′)/(z − xy),
t = x′−xs, and u = y′−y, implying that I ′ is uniform among all non-DH triples (gx

′
, gy

′
, gz

′
)

with z′ − x′y′ ∈ Z∗n, independent of I as well. That is,

Pr[x′ = v, y′ = w, z′ = r] = Pr[s =
r − vw
z − xy

, t = v − xs, u = w − y] =
1

φ(n)n2
,

for any values r, v, w ∈ Zn with r − vw ∈ Z∗n. �

We will often use the following variants of the discrete log and Diffie-Hellman problems:

DL∗ problem: compute x, given gx with x ∈ Z∗n.

DH∗ problem: compute gxy, given gx, gy with x ∈ Z∗n and y ∈ Zn.

DH∗∗ problem: compute gxy, given gx, gy with x, y ∈ Z∗n.

DDH∗ problem: distinguish gxy from gz, given gx, gy with x ∈ Z∗n, y, z ∈ Zn, z − xy ∈ Z∗n.

DDH∗∗ problem: distinguish gxy from gz, given gx, gy with x, y, z ∈ Z∗n, z − xy ∈ Z∗n.

Since Z∗n = Zn \ {0} in the common case that the group order n is prime, the only differ-
ence with the basic problems is that 1 ∈ 〈g〉 is not a valid input anymore in some cases.
Using slightly different transformations, each of these variants can be seen to be random
self-reducible as well, except that for the DDH∗∗ problem we need to assume that the prime
factorization of n is given.

§1.3 Assumptions 11

EXAMPLE 1.30 It is easy to see that the DL∗ problem is random self-reducible as follows.
Given any instance h = gx with x ∈ Z∗n (hence, h ∈ 〈g〉∗):

1. Transform h into a uniformly random instance h′ = hu with u ∈R Z∗n.

2. Solve instance h′ yielding x′ = logg h
′.

3. Extract the solution as x = logg h = x′/u mod n.

This time h′ is distributed uniformly on 〈g〉∗.
As an alternative approach, the transformation used for the DL problem in the proof

of Proposition 1.29 can also be used here. In this case, one tests in addition in step 1 if
ord(h′) = n to make sure h′ is a valid input in step 2 satisfying h′ ∈ 〈g〉∗, cf. Exercise 1.7.
However, to ensure that the test ord(h′) = n can be evaluated efficiently, we assume that we
know the prime factorization of n. Then, given any instance h = gx with x ∈ Z∗n:

1. Transform h into a uniformly random instance h′ = hgu with u ∈R Zn until ord(h′) = n.

2. Solve instance h′ yielding x′ = logg h
′.

3. Extract the solution as x = logg h = x′ − u mod n.

In step 2, h′ is distributed uniformly on 〈g〉∗ as required. To see that the (expected) running
time of step 1 is polynomial in the size of n, we note that on average n/φ(n) = O(log log n)
uniformly random h′ ∈ 〈g〉 are needed to find one h′ ∈ 〈g〉∗.

EXERCISE 1.31 Show that (a) the DH∗ problem is random self-reducible, and (b) the DH∗∗

problem is random self-reducible.

EXERCISE 1.32 Show that (a) the DDH∗ problem is random self-reducible, and (b) given
the prime factorization of n, the DDH∗∗ problem is random self-reducible. Hints: for both
parts use three random numbers for the transformation in step 1, s, t ∈R Z∗n and u ∈R Zn;
for part (b), also test for invalid inputs, in the same way as at the end of Example 1.30.

EXERCISE 1.33 Show that the following problems are random self-reducible for any group
〈g〉 of order n:

(a) given gx with x ∈ Zn, compute gx
2
;

(b) given gx with x ∈ Z∗n, compute g1/x;

(c) given gx, gy with x, y ∈ Z∗n, compute gx/y;

(d) given gx, gy with x ∈ Zn, y ∈ Z∗n, compute gx/y;

(e) given gx with x ∈ Z∗n, compute gx
3
;

(f) given gx, gx
2

with x ∈ Zn, compute gx
3
;

(g) given gx, gy with x, y ∈ Zn, compute g(x+y)2 ;

(h) given gx, gy with x, y ∈ Zn, x− y ∈ Z∗n, compute g1/(x−y).

EXERCISE 1.34 Let m = pq be an RSA modulus, that is, p and q are large, distinct primes
of bit length k, for some integer k. Let integer e > 1 satisfy gcd(e, φ(m)) = 1, where
φ(m) = (p− 1)(q− 1). The RSA problem is to compute x = y1/e mod m given y ∈ Z∗m. Show
that the RSA problem is random self-reducible.

12 CHAPTER 1 Introduction

EXERCISE 1.35 Let m be an RSA modulus, as in the previous exercise. Let Jm = {y ∈ Z∗m :
(y/m) = 1}, the set of all integers in Z∗m with Jacobi symbol 1. The Quadratic Residuosity
(QR) problem is to decide whether a given y ∈ Jm is a quadratic residue modulo m or not,
that is, whether y ∈ QRm, where QRm = {y ∈ Z∗m : ∃x∈Z∗my = x2 mod m}. Show that the
QR problem is random self-reducible.

1.3.4 RANDOM ORACLE MODEL

DEFINITION 1.36 A function H : {0, 1}∗ → {0, 1}k, mapping bit strings of arbitrary length
to bit strings of a fixed length k, k ≥ 0, is called a hash function. Function H is called a
cryptographic hash function, if it is easy to compute H(x) given any string x, and one or
more of the following requirements are satisfied:

• preimage resistance (onewayness): given a k-bit string y, it is hard to find a bit string
x such that H(x) = y.

• 2nd-preimage resistance (weak collision resistance): given a bit string x, it is hard to
find a bit string x′ 6= x such that H(x′) = H(x).

• collision resistance (strong collision resistance): it is hard to find a pair of bit strings
(x, x′) with x 6= x′ such that H(x) = H(x′).

In general, collision resistance implies 2nd-preimage resistance, but collision resistance need
not imply preimage resistance. In practice, however, cryptographic hash functions usually
satisfy all three requirements.

Practical examples of cryptographic hash functions are MD5, SHA-1, SHA-256, with
output lengths k = 128, k = 160, and k = 256, respectively.9 If collision resistance is not
required, one may truncate the outputs by discarding, e.g., the last k/2 bits; the resulting
hash function is still preimage resistant.

Many protocols make use of a cryptographic hash function. In order to be able to prove
anything useful on the security of such protocols one commonly uses the so-called random
oracle model. In this model, a cryptographic hash function is viewed as a random oracle,
which when queried will behave as a black box containing a random function H : {0, 1}∗ →
{0, 1}k, say. If the oracle is queried on an input value x, it will return the output value H(x).
As a consequence, if the oracle is queried multiple times on the same input, it will return
the same output value, as H is a function. Moreover, if one observes the distribution of the
output value for different input values, the distribution will be uniform, as H is a random
function.

Note that the use of the random oracle model is a heuristic! If we prove a protocol secure
in the random oracle model, it does not follow that the same protocol using, e.g., SHA-256
as its hash function is secure, since SHA-256 is simply not a random function.10

Thus, the practical upshot of the random oracle model is that a protocol proved secure

9In August 2004, collisions for MD5 have (finally) been shown; furthermore, collisions for SHA-0 (a previous
version of SHA-1) have also been found. See this Mathematica notebook for some example collisions.

10It is even possible to construct protocols that can be proved secure in the random oracle model, but are
insecure when used with some concrete hash function. Yet, these “counterexamples” are not realistic. See also
Exercise 5.22.

http://www.win.tue.nl/~berry/2WC13/CryptographicHash-Collisions.nb

§1.3 Assumptions 13

in it can only be broken if the attacker takes into account specific properties of the concrete
hash function used.

The following proposition confirms that finding collisions is indeed easier than finding
(2nd-)preimages.

PROPOSITION 1.37 Let H be a cryptographic hash function, which we view as a random
oracle. Let E be an (unlimitedly powerful) adversary that makes at most t hash queries.

(i) Let y ∈R {0, 1}k be given. The probability that E finds a preimage x such that H(x) = y
is at most t/2k.

(ii) Let x ∈R {0, 1}∗ be given. The probability that E finds a 2nd-preimage x′, x′ 6= x, such
that H(x′) = H(x) is at most t/2k.

(iii) The probability that E finds a collision (x, x′), x 6= x′, such that H(x) = H(x′) is at
most t2/2k.

PROOF

(i) For each hash query, the probability of an output equal to y is exactly 2−k.

(ii) Let y = H(x). For each hash query on inputs different from x, the probability of an
output equal to y is again exactly 2−k.

(iii) Write N = 2k. If t ≥
√
N , then the bound is immediate. So assume t <

√
N . For hash

queries at distinct inputs x1, . . . , xt, the probability of at least one collision is equal to

1−N(N − 1)(N − 2) · · · (N − t+ 1)/N t.

This probability is bounded above by

1− (1− 1/N)(1− 2/N) · · · (1− (t− 1)/N)

≤ 1− e−2/Ne−4/N · · · e−2(t−1)/N

= 1− e−t(t−1)/N

≤ 1− (1− t(t− 1)/N)
= t(t− 1)/N
≤ t2/N,

using that 1− x ≥ e−2x for 0 ≤ x ≤ 3/4 and that ex ≥ 1 + x for all x ∈ R.

�

EXERCISE 1.38 See the proof of Proposition 1.37(iii). Show that the upper bound for the
probability of finding at least one collision is almost tight by showing that this probability is
bounded below by t(t− 1)/4N , for t <

√
N .

There are numerous further requirements that can be demanded of a cryptographic hash
function beyond what is stated in Definition 1.36. In general, any deviation from what can
be statistically expected of a random function should be absent or unlikely, and in any case it
should be infeasible to exploit such statistical weaknesses. By definition, the random oracle
model is robust w.r.t. such additional requirements. For example, partial preimage resistance

14 CHAPTER 1 Introduction

(or, local onewayness) basically states that given a k-bit string y it is hard to find (partial)
information about any input x satisfying H(x) = y. Many applications of hash functions,
such as the bit commitment scheme of Section 3.2.1, rely on this requirement rather than
the (much weaker) requirement of preimage resistance. Clearly, partial preimage resistance
also holds in the random oracle model, in which each hash value is, by definition, statistically
independent of the input value.

EXERCISE 1.39 Let H be a preimage resistant hash function. Show that partial preimage
resistance is strictly stronger than preimage resistance, by constructing a preimage resistant
hash function H ′ (from H) which is not partial preimage resistant.

EXERCISE 1.40 Suppose one demands of a hash function H that it is hard to find a pair of
bit strings (x, x′) satisfying H(x) = H(x′), where s denotes the bit complement of bit string
s. Analyze the probability that an adversary E making at most t hash queries finds such a
pair, where H is viewed as a random oracle.

1.4 BIBLIOGRAPHIC NOTES

Most of the notions covered in this chapter have become standard, and are widely used in
cryptography. We highlight a few of the more recent developments.

The DL assumption has been known for a long time, and nowadays many groups have
been identified for which the DL problem is assumed to be hard. As for the examples given
in the text, we note that Z∗p and F∗q (Example 1.4) are classical instances. The particular
advantages of using a (prime) order p′ subgroup of Z∗p (Example 1.5) were identified by
Schnorr [Sch91], noting that p′ can be much smaller than p (e.g., p should be of length at
least 2048 bits to counter index-calculus methods, whereas for p′ a length of 256 bits suffices
to counter Pollard’s rho method). The use of elliptic curves for cryptography (Example 1.6)
was proposed independently by Koblitz [Kob87] and Miller [Mil86].

The DH assumption was part of the seminal paper by Diffie and Hellman [DH76] in-
troducing the basic ideas of asymmetric cryptography. The explicit statement of the DDH
assumption was only identified years later (first in [Bra93]), and is now known to be equivalent
to the semantic security of the ElGamal cryptosystem (see Section 2.1.4). The fact that the
DDH problem is random self-reducible was found independently by [Sta96] and [NR97]. See
also [Bon98] for an overview of the DDH assumption.

The notions of indistinguishability and their use in cryptography date back to the early
1980s, with the papers by Yao [Yao82b] and Goldwasser and Micali [GM84] playing a major
role in this respect.

The notion of random self-reducibility was introduced in the context of various crypto-
graphic primitives [AL83, TW87]; it also plays a role in complexity theory. We have used a
limited form of random self-reducibility, which suffices for our purposes (see Definition 1.27).
More generally, random self-reducibility may comprise solving multiple (polynomially many)
random instances I ′1, I

′
2, . . . in order to solve a given instance I, where these instances may

even be determined adaptively (e.g., when I ′2 is computed as a function of I and the answer
for I ′1); see, e.g., [FF93].

The idea and use of the random oracle model was first elaborated in [BR93], thereby for-
malizing the use of hash functions in common constructions such as the Fiat-Shamir heuristic
(see Section 5.4). Many papers have employed the random oracle model since. Additional

§1.4 Bibliographic Notes 15

requirements for hash functions such as partial preimage resistance are considered throughout
the literature; e.g., see [MOV97, p.331], which also mentions non-correlation (of input bits
and output bits) and near-collision resistance as specific requirements.

CHAPTER 2

Key Exchange Protocols

2.1 DIFFIE-HELLMAN KEY EXCHANGE

2.1.1 BASIC PROTOCOL

The Diffie-Hellman key exchange protocol enables two parties A and B to arrive at a shared
key K by exchanging messages over a public channel. Key K remains unknown to any
eavesdropper.

The protocol runs as follows. Suppose partiesA and B have agreed upon a group Gn = 〈g〉,
where we require n to be prime. Party A picks a value xA ∈ Z∗n uniformly at random, and
sends hA = gxA to party B. Similarly, party B picks a value xB ∈ Z∗n uniformly at random,
and sends hB = gxB to party A. Upon receipt of hB, party A computes key KAB = hxAB .
Similarly, party B computes key KBA = hxBA .

Clearly, K = KAB = KBA is a shared key for A and B, which means (i) that it is the
same for A and B, and (ii) that it is a private key (only known to A and B), and (iii) that
the key is actually equal to gxAxB , hence uniformly distributed.

EXERCISE 2.1 Explain what happens if the secret exponents xA and xB are chosen from Zn
instead of Z∗n. Confirm your findings by computing the statistical distance ∆(K;K ′), where
K = gxAxB with xA, xB ∈R Z∗n and K ′ = gx

′
Ax
′
B with x′A, x

′
B ∈R Zn.

2.1.2 PASSIVE ATTACKS

A passive attacker (eavesdropper) learns the values hA = gxA and hB = gxB . Under the DL
assumption (Definition 1.19) it is hard to determine xA and xB from hA and hB, respectively.
However, this does not guarantee that the value of K = hxBA cannot be determined given just
hA and hB. To exclude this possibility we need the DH assumption (Definition 1.20).

A stronger assumption is needed to ensure that an eavesdropper does not learn any in-
formation whatsoever on K. In general, an eavesdropper may learn some partial information
on K, while full recovery of K is infeasible. For example, an eavesdropper might be able to
determine the parity of K, viewing K as an integer, which would mean that the eavesdropper
learns one bit of information. To exclude such possibilities we need the DDH assumption
(Definition 1.21). We will now make this more precise.

First we argue why we require n to be prime. Suppose n is composite, say n = 2p′, where
p′ is an odd prime. For any element h ∈ 〈g〉, we have ord(h) ∈ {1, 2, p′, 2p′} and ord(h) is
easily computed. We have the following table, where each case occurs approximately with

16

§2.1 Diffie-Hellman Key Exchange 17

probability 1/4:
ord(hA) ord(hB) ord(K)

p′ p′ p′

p′ 2p′ p′

2p′ p′ p′

2p′ 2p′ 2p′

Hence, the order of the key K is biased, as Pr[ord(K) = p′] ≈ 3/4 and Pr[ord(K) = 2p′] ≈ 1/4.
If K would be generated uniformly at random in 〈g〉, then we would have Pr[ord(K) = p′] ≈
Pr[ord(K) = 2p′] ≈ 1/2.

Such a slight deviation in the distribution of K seems innocent. However, suppose key
K is used to encrypt a 1-bit plaintext, say M ∈R {0, 1}, using C = gMK as ciphertext
(similar to one-time pad encryption). In that case, an eavesdropper would compute ord(C).
If ord(C) = p′ then M = 0 is most likely, and if ord(C) = 2p′ then M = 1 is most likely.

EXAMPLE 2.2 Take 〈g〉 = Z∗p as in Example 1.4, and suppose p−1 = 2p′, where p′ is prime.
Recall that the even powers of g are quadratic residues modulo p and that the odd powers of
g are quadratic non-residues modulo p. Hence, Z∗p = QRp ∪QRp, where

QRp = (Z∗p)2 = {1, g2, . . . , g2p′−2}, QRp = {g, g3, . . . , g2p′−1}.

Note that 1 ∈ QRp and −1 = gp
′ ∈ QRp. Furthermore, all elements of QRp \{1} are of order

p′ and all elements of QRp \ {−1} are of order 2p′.

We then have the following table:

hA hB K

QRp QRp QRp
QRp QRp QRp
QRp QRp QRp
QRp QRp QRp

If a plaintext M ∈R {0, 1} is encrypted as C = gMK, then we get that Pr[gM ∈ QRp | C ∈
QRp] = Pr[K ∈ QRp] = 3/4 and also that Pr[gM ∈ QRp | C ∈ QRp] = Pr[K ∈ QRp] = 3/4.
Hence, M = 0 is most likely if C ∈ QRp, and M = 1 is most likely if C ∈ QRp.

By actually computing ord(K) from ord(hA) and ord(hB), one can see that ord(gM) hence
M itself can be determined from ord(C) in case n = 2p′. See also Exercise 2.6.

EXERCISE 2.3 Argue that the DDH assumption is false when n contains a small prime
factor.

The simplest and most efficient way to guarantee that n contains no small prime factors
is to require that n itself is a sufficiently large prime. As an additional benefit, we have that
Zn is a field (rather than a ring).

We now wish to show that if an eavesdropper would be able to determine any partial
information on key K, then we would get a contradiction with the DDH assumption. For the
scope of these lecture notes, we show this for a rather limited scenario only.

We consider balanced functions f : 〈g〉 → {0, 1}, for which the a priori probabilities
satisfy Pr[f(u) = 0] = Pr[f(u) = 1] = 1/2 for u ∈R 〈g〉. Now, suppose there exists an

18 CHAPTER 2 Key Exchange Protocols

attacker E (which is a p.p.t. algorithm) and a balanced function f for which Pr[E(hA, hB) =
f(K)] > 1/2+ε, for some non-negligible value ε. Then, the claim is that we have the following
distinguisher D for DDH:

D(gx, gy, gz) =

{
1, if E(gx, gy) = f(gz),
0, if E(gx, gy) 6= f(gz).

By the above assumption on E , we have that Pr[D(hA, hB,K) = 1] = Pr[E(hA, hB) =
f(K)] > 1/2 + ε. On the other hand, we have that Pr[D(hA, hB, g

z) = 1] = Pr[E(hA, hB) =
f(gz)] = 1/2, since for random z the value of f(gz) will be distributed uniformly on {0, 1},
independently of the values of hA, hB. Hence, the advantage for D is bounded below by
1/2 + ε − 1/2 = ε, which is non-negligible. This contradicts the DDH assumption (Defini-
tion 1.21).

EXERCISE 2.4 Extend the above analysis to the case that the a priori probabilities are given
by Pr[f(u) = 0] = p0 and Pr[f(u) = 1] = p1 = 1− p0.

2.1.3 A PRACTICAL VARIANT

We now consider the Diffie-Hellman protocol as above, except that the key K is defined as
follows:

K = H(gxAxB),

where H is a cryptographic hash function. Clearly, both parties are still able to compute K
by first computing gxAxB and then applying H. A practical choice for H is the standardized
SHA-256 hash function.

The reason for using a hash function H is that even though gxAxB will have a sufficient
amount of entropy, it cannot be simply used as an AES key, for example. The value of gxAxB

will be uniformly distributed on the group elements in 〈g〉 \ {1}, but usually a redundant
representation is used for the group elements. For example, if 〈g〉 is a subgroup of Z∗p,
then elements of 〈g〉 are usually represented as bit strings of length dlog2(p + 1)e, while the
order of 〈g〉 can be much smaller than p. The use of a cryptographic hash function is a
practical way to remove this redundancy. The result will be a random bit string as long as
the order of the group n sufficiently exceeds 2k, where k denotes the output length of H, i.e.,
H : {0, 1}∗ → {0, 1}k.

We now argue that the resulting protocol is secure against passive attacks, assuming the
DH assumption (Definition 1.20) and the random oracle model (Section 1.3.4). As above, we
do so for a limited case, where we show that for any balanced function f : {0, 1}k → {0, 1}
and for any p.p.t. attacker E that Pr[E(hA, hB) = f(K)] ≤ 1/2 + ε, for some negligible value
ε.

Without loss of generality, we assume that E queries the random oracle H on unique
inputs only. Let L denote the event that E queries H on gxAxB .

Pr[E(hA, hB) = f(K)]

= Pr[E(hA, hB) = f(K) | L]Pr[L] + Pr[E(hA, hB) = f(K) | ¬L]Pr[¬L]

≤ Pr[L] + Pr[E(hA, hB) = f(K) | ¬L]Pr[¬L]

= Pr[L] + 1
2(1− Pr[L])

= 1
2 + 1

2Pr[L],

§2.1 Diffie-Hellman Key Exchange 19

using that Pr[E(hA, hB) = f(K) | ¬L] = 1/2, since E has no information on K = h(gxAxB) if
it does not query H at gxAxB .

It remains to bound Pr[L]. We show that Pr[L] is negligible under the DH assumption.
Let E ′ be an algorithm that takes hA and hB as input and runs E as a subroutine on these
inputs, while recording all H queries made by E . When E halts, E ′ picks one of the inputs used
by E in an H query at random, and returns this value as output. Clearly, E ′ is a probabilistic
polynomial time algorithm. We then have

Pr[E ′(hA, hB) = gxAxB] = Pr[L]/N,

where N denotes the total number of H queries. Since the running time of E is polynomial,
N is polynomial as well. Then, by the DH assumption, we have that Pr[E ′(hA, hB) = gxAxB]
is negligible, hence that Pr[L] is negligible.

EXERCISE 2.5 Extend the above analysis to the case that the a priori probabilities are given
by Pr[f(u) = 0] = p0 and Pr[f(u) = 1] = p1 = 1− p0.

2.1.4 ASIDE: ELGAMAL ENCRYPTION

Recall that the ElGamal cryptosystem is defined as follows, given a security parameter k.

Key generation. Pick a group 〈g〉 at random among all groups of “size” k. Let n denote
the order of g. Next, pick x ∈R Z∗n. The private key is x, the public key is h = gx.

Encryption. Given a plaintext M ∈ 〈g〉, pick u ∈R Zn. The ciphertext for a public key h is
the pair (gu, huM).

Decryption. Given a ciphertext (A,B), the plaintext is recovered as M = B/Ax, using
private key x.

Note that key generation and encryption are randomized, while decryption is deterministic.
In practice, the group 〈g〉 may be shared between many users.

The ElGamal cryptosystem is semantically secure under the DDH assumption. That is,
the ciphertext does not leak any (partial) information on the plaintext.

EXERCISE 2.6 Show how to break the ElGamal cryptosystem for 〈g〉 = Z∗p, with p = 2p′+1,
p, p′ both prime. Focus on the case that M ∈ {1, g}, and show how to recover M .

A practical variant of the ElGamal cryptosystem is obtained as follows, using a crypto-
graphic hash function:

Key generation. As above.

Encryption. Given a plaintext M ∈ {0, 1}k, pick u ∈R Zn. The ciphertext for a public key
h is the pair (gu, H(hu)⊕M).

Decryption. Given a ciphertext (A,B), the plaintext is recovered as M = H(Ax)⊕B, using
private key x.

This variant is secure under the DH assumption, in the random oracle model. One may think
of H(Ax) as a one-time pad.

20 CHAPTER 2 Key Exchange Protocols

2.2 AUTHENTICATED KEY EXCHANGE

2.2.1 MAN-IN-THE-MIDDLE ATTACKS

Under the DDH assumption, the Diffie-Hellman protocol is secure against passive attack-
ers. Against active attackers, however, the protocol is completely insecure. While a passive
attacker is restricted to eavesdropping on the communication between A and B, an active
attacker is allowed to manipulate the messages exchanged between A and B at its own liking.
That is, an attacker may delete, inject, and modify messages.

In the context of key exchange protocols, the most prominent type of active attack is a
so-called man-in-the-middle attack. Here, the idea is that when A and B engage, say, in an
execution of the Diffie-Hellman protocol, the attacker will replace the values hA and hB by
values h′A and h′B of its own choice, respectively. Below, we consider a few examples.

Attack 1. The attacker uses h′A = g and h′B = g, which results in K = hA as the “common”
key for A and K = hB as the “common” key for B. These keys will be known to any passive
eavesdropper as well. Note that an event such as hA = g does not happen in practice, as such
a particular event occurs with a negligible probability of 1/n only.

Attack 2. The attacker uses h′A = gx
′
A and h′B = gx

′
B , with x′A, x

′
B ∈R Z∗n. This will go

completely unnoticed to A and B as h′A and h′B follow exactly the same distribution as hA
and hB. At the end of the protocol, A will compute gxAx

′
B as its “common” key while B will

compute gx
′
AxB as its “common” key.

This is the standard man-in-the-middle attack, and it constitutes a complete break of the
protocol. The keys used by A and B are not even equal to each other, and both are fully
known to the attacker.

Attack 3. The attacker uses h′A = hAg
u and h′B = hB, with u ∈R Zn. Then A will compute

KAB = gxAxB , while B computes K ′AB = g(xA+u)xB . Clearly, these keys are uncorrelated
(hence different from each other, except with negligible probability). However, the attacker
does not know anything about the keys KAB and K ′AB, except that K ′AB = KABh

u
B.

Attack 4. The attacker uses h′A = 1/hA and h′B = 1/hB. Then A and B compute as
common key g−xAxB . Then A and B agree on the common key and the attacker does not
know any information on the shared key. However, the key is different than intended or
expected.

For instance, suppose 〈g〉 is a group of points on an elliptic curve (see Example 1.6).
To perform the attack, the attacker only needs to negate the y-coordinate of the points
exchanged by A and B (assuming the curve equation is of the form Y 2 = f(X)). As a result,
the y-coordinate of the resulting common key is negated.

EXERCISE 2.7 Consider the two protocols of Figure 2.1 between parties A and B connected
by an insecure communication channel: Protocol I for sending a plaintext M ∈ 〈g〉, M 6= 1,
securely from party A to party B, and Protocol II for sending a plaintext b ∈ {0, 1} securely
from partyA to party B. The object of both protocols is that the plaintext remains completely
hidden from other parties than A and B, and that the plaintext cannot be modified by other
parties than A or B.

§2.2 Authenticated Key Exchange 21

Party A Party B
xA ∈R Z∗n
hA ←MxA −−−

hA
−−−−−→

xB ∈R Z∗n

←−−
hAB
−−−−− hAB ← hxBA

hB ← h
1/xA
AB

−−−
hB
−−−−−→

M ′ ← h
1/xB
B

Protocol I

Party A Party B
bA ∈R {0, 1}
cA ← b⊕ bA −−−

cA
−−−−→

bB ∈R {0, 1}

←−−−
cAB
−−−−− cAB ← cA ⊕ bB

cB ← cAB ⊕ bA
−−−−

cB
−−−−−→

b′ ← cB ⊕ bB

Protocol II

FIGURE 2.1: Three-pass encryption?

First, verify that M ′ = M and b′ = b if A and B follow protocols I and II, respectively.
Next, determine for protocol I whether it is secure against passive attacks, and whether it is
secure against active attacks. If secure, describe the relevant computational assumption (if
any); if insecure, show an attack. Then, do the same for protocol II.

2.2.2 A PROTOCOL USING DIGITAL SIGNATURES

The Diffie-Hellman protocol only withstands passive attacks. A first, but general, idea to
obtain a key exchange protocol withstanding active attacks is to authenticate the commu-
nication between A and B. For instance, we may assume that A and B know each other’s
public keys in a digital signature scheme.

There are many solutions to this problem, but only few have been proved correct. We will
not give a formal security analysis at this point.

The protocol is as follows. Party A picks xA ∈ Z∗n uniformly at random, and sends
hA = gxA along with a signature on (hA,B) to party B. Similarly, party B picks xB ∈ Z∗n
uniformly at random, and replies with hB = gxB along with a signature on (hA, hB,A) to
party A. As before, the agreed upon key is K = gxAxB .

A protocol of this type is secure under the DDH assumption, also assuming that the digital
signature scheme is secure.

2.2.3 A PROTOCOL USING PASSWORD-BASED ENCRYPTION

Suppose no digital signature scheme is available. However, suppose parties A and B share a
password, which is a relatively small secret.

Let E : {0, 1}∗ × 〈g〉 → 〈g〉 be an encryption algorithm that takes as input a password w
and a plaintext M and produces as output a ciphertext Ew(M). Let D : {0, 1}∗ × 〈g〉 → 〈g〉
be the corresponding decryption algorithm such that Dw(Ew(M)) = M for all passwords w
and plaintexts M .

The protocol is as follows. Party A picks xA ∈ Z∗n uniformly at random, and sends
Ew(hA), where hA = gxA , to party B. Similarly, party B picks xB ∈ Z∗n uniformly at random,
and replies with Ew(hB), where hB = gxB . Party A decrypts Ew(hB) to recover the value

22 CHAPTER 2 Key Exchange Protocols

of hB = Dw(Ew(hB)). Similarly, party B recovers the value of hA, using w. As before, the
agreed upon key is K = gxAxB .

An eavesdropper who wants to guess the password sees Ew(hA) and Ew(hB). These values
do not give any information on the password w, since hA and hB are random and unknown
to the eavesdropper.

An active attacker may try a candidate password w′ by sending a value Ew′(hA) on behalf
of A. When the attacker succeeds, it guessed the password correctly. However, the best
the attacker can do is trying all passwords one by one. The attacker cannot do an off-line
dictionary attack.

2.3 BIBLIOGRAPHIC NOTES

The Diffie-Hellman key exchange protocol is from the seminal paper by Diffie and Hell-
man [DH76], in which the other fundamental notions of public-key cryptography, namely
asymmetric cryptosystems and digital signature schemes, were also introduced. The inti-
mately related ElGamal cryptosystem—sometimes called Diffie-Hellman encryption for that
reason—was introduced by ElGamal in [ElG85], together with a secure digital signature
scheme based on a discrete log assumption. Originally, these results were formulated for the
group Z∗p only (cf. Example 1.4), but the generalization to any finite cyclic group is easy.

Many ways have been proposed to extend the basic Diffie-Hellman protocol to an authen-
ticated key exchange protocol. The approach of Section 2.2.2 is rather generic, and leads
to provably secure protocols for various settings (see, e.g., Shoup’s paper [Sho99], which
introduces several models for (authenticated) key exchange protocols and formally analyzes
various instances of such protocols). The approach of Section 2.2.3, which allows for password-
based authentication rather than strong authentication, is known as EKE (Encrypted Key
Exchange) and is due to Bellovin and Merritt [BM92].

Key exchange and similar protocols are probably the most widely studied and applied
type of protocol in cryptography. For instance, the book by Boyd and Mathuria [BM03]
contains over 150 protocols for authentication and key establishment—which is still far from
exhaustive as noted by the authors.

Protocol I in Figure 2.1 is known as Shamir’s no-key protocol and also as Shamir’s three-
pass protocol (cf. [MOV97, Section 12.3]).

CHAPTER 3

Commitment Schemes

The functionality of a commitment scheme is commonly introduced by means of the following
analogy. Suppose you need to commit to a certain value, but you do not want to reveal it
right away. For example, the committed value is a sealed bid in some auction scheme. One
way to do this is to write the value on a piece of paper, put it in a box, and lock the box
with a padlock. The locked box is then given to the other party, but you keep the key. At a
later time, you present the key to the other party who may then open the box, and check its
contents.

An immediate application of commitment schemes is known as “coin flipping by tele-
phone.” Two parties, say A and B, determine a mutually random bit as follows. Party A
commits to a random bit bA ∈R {0, 1} by sending a commitment on bA to party B. Party
B then replies by sending a random bit bB ∈R {0, 1} to A. Finally, party A opens the
commitment and sends bA to B. Both parties take b = bA ⊕ bB as the common random bit.

If at least one of the parties is honest, the resulting bit b is distributed uniformly at
random, assuming that A and B cannot cheat when revealing their bits. Note that party
B sees the commitment of A before choosing its bit bB, so no information on bit bA should
leak from the commitment on bA. Similarly, party A could try to influence the value of the
resulting bit b (after seeing the bit bB) by opening the commitment on bA as a commitment
on 1− bA. Clearly, party A should not be able to “change its mind” in such a way!

Generating mutually random bits is a basic part of many protocols. Commitments are
used as an auxiliary tool in many cryptographic applications, such as zero-knowledge proofs
and secure multi-party computation.

3.1 DEFINITION

A commitment scheme consists of two protocols, called commit and reveal, between two
parties, usually called the sender and the receiver. In many cases, the protocols commit and
reveal can be defined in terms of a single algorithm, requiring no interaction between the
sender and receiver at all. Such commitment schemes are called non-interactive.

DEFINITION 3.1 Let commit : {0, 1}k × {0, 1}∗ → {0, 1}∗ be a deterministic polynomial
time algorithm, where k is a security parameter. A (non-interactive) commitment scheme
consists of two protocols between a sender and a receiver:

Commit Phase. A protocol in which the sender commits to a value x ∈ {0, 1}∗ by comput-

23

24 CHAPTER 3 Commitment Schemes

ing C = commit(u, x), where u ∈R {0, 1}k, and sending C to the receiver. The receiver
stores C for later use.

Reveal Phase. A protocol in which the sender opens commitment C = commit(u, x) by
sending u and x to the receiver. The receiver computes commit(u, x) and verifies that
it is equal to the previously received commitment.

In the special case that the committed value is a bit, that is, x ∈ {0, 1}, one speaks of a
bit commitment scheme. The security requirements for a bit commitment scheme are the
following.

The commitment must be binding, i.e., for any adversary E , the probability of generating
u, u′ ∈ {0, 1}k satisfying commit(u, 0) = commit(u′, 1) should be negligible (as a function
of k). Furthermore, the commitment must be hiding, i.e., the distributions induced by
commit(u, 0) and commit(u, 1) (with u ∈R {0, 1}k) are indistinguishable.

Moreover, one makes the following distinctions. A commitment scheme is called com-
putationally binding if the adversary E is restricted to be a p.p.t. algorithm. If no such
restriction is made (in other words, the adversary may be unlimitedly powerful), the scheme
is called information-theoretically binding. Similarly, if the distributions induced by
commit(u, 0) and commit(u, 1) are computationally indistinguishable the scheme is called
computationally hiding and the scheme is called information-theoretically hiding if
these distributions are statistically (or even perfectly) indistinguishable.

The security properties are easily extended to the case that x is an arbitrary bit string.

Note that the above security requirements only cover attacks by either the sender or the
receiver. For example, suppose party A acts as the sender and party B acts as the receiver,
and A sends a commitment C to B. Then there is no guarantee that B will notice if an
attacker replaces C by a commitment C ′ = commit(u′, x′) during the commit protocol, and
replaces u, x by u′, x′ during the reveal protocol. Such attacks may be stopped by using an
authenticated channel between A and B.

3.2 EXAMPLES

3.2.1 USING A CRYPTOGRAPHIC HASH FUNCTION

Given a cryptographic hash function H, one obtains a bit commitment scheme simply by
setting

commit0(u, x) = H(u, x),

where x ∈ {0, 1} and u ∈R {0, 1}k.
Collision-resistance of H guarantees that the committer cannot prepare u, x and u′, 1− x

with H(u, x) = H(u′, 1− x). Hence, the scheme is binding.

Preimage resistance of H is necessary but not sufficient to guarantee that the value of x
remains hidden (as well as the value of u). Rather, one needs to assume partial preimage
resistance of H, as briefly discussed at the end of Section 1.3.4. In the random oracle model,
the scheme is therefore hiding as long as guessing a bit string of k + 1 bits is infeasible.

Thus, we conclude that the scheme is computationally binding and computationally hid-
ing. Can we do better?

§3.2 Examples 25

3.2.2 USING A DISCRETE LOG SETTING

Let 〈g〉 be a group of order n, where n is a large prime. Let h ∈R 〈g〉 \ {1} denote a random
group element (such that logg h is not known to any party).

We define the following bit commitment scheme (known as “Pedersen’s commitment
scheme”):

commit1(u, x) = guhx,

where u ∈R Zn. This scheme is computationally binding (under the DL assumption), which
can be seen as follows. Suppose it is computationally feasible to compute u, u′ ∈ Zn such
that commit1(u, x) = commit1(u′, 1 − x). That means that guhx = gu

′
h1−x, hence that

logg h = (u− u′)/(1− 2x). Since u, u′, and x are all known, this means that the discrete log
of h with respect to g would be computed.

On the other hand, the scheme is information-theoretically hiding, since the distribution
of guhx is statistically independent of the value of x (and hence gu and guh are perfectly
indistinguishable).

As a complementary bit commitment scheme, one may use the following ElGamal-like
scheme:

commit2(u, x) = (gu, hu+x),

where u ∈R Zn. This scheme is information-theoretically binding, since it is easily seen that
there cannot even exist u, u′ ∈ Zn such that commit2(u, x) = commit2(u′, 1−x), for x ∈ {0, 1}.

On the other hand, this scheme is computationally hiding, since x can be computed
as follows. Assuming that the DL problem is feasible, one may compute x from a given
commitment commit2(u, x) = (A,B), using the formula x = loghB − logg A. Note, however,
that the DL assumption is not sufficient to guarantee that the scheme is hiding. We need to
use the DDH assumption to ensure the hiding property, as solving for x given commit2(u, x)
is equivalent to solving the DDH problem.

Both commitment schemes remain secure when used for x ∈ Zn instead of x ∈ {0, 1}.

EXERCISE 3.2 Analyze the security properties of the schemes commit1 and commit2 for the
case that x ∈ Zn.

EXERCISE 3.3 What happens if the receiver knows logg h in scheme commit1? Same ques-
tion for scheme commit2.

EXERCISE 3.4 Discuss the security of the following commitment scheme for values x ∈ 〈g〉:

commit(u, x) = gux,

where u ∈R Zn. Is it binding? Is it hiding?

3.2.3 IMPOSSIBILITY RESULT

A natural question is whether there exists a commitment scheme which is both information-
theoretically binding and information-theoretically hiding. The following informal argument
shows that such a scheme cannot exist.

Consider any bit commitment scheme which is information-theoretically binding. For such
a scheme there cannot exist any u, u′ such that commit(u, 0) = commit(u′, 1), because then
the (unlimitedly powerful) sender would be able to compute both u and u′, and open the

26 CHAPTER 3 Commitment Schemes

commitment at its liking. However, if the sender commits to 0, say, using C = commit(u, 0)
for some u, the (unlimitedly powerful) receiver will notice, by exhausting the finite set of
possibilities, that there does not exist any u′ with C = commit(u′, 1), hence the receiver
knows that the committed bit must be 0.

3.3 HOMOMORPHIC COMMITMENTS

The basic security requirement for a commitment scheme are that it must be binding and
hiding. Another relevant property of a commitment scheme is that it may be homomorphic.
For the moment we will introduce the homomorphic property by means of an example. Con-
sider Pedersen’s commitment scheme, given by commit1(u, x) = guhx, where u ∈R Zn and
x ∈ Zn. This scheme is additively homomorphic in the sense that:

commit1(u, x) commit1(u′, x′) = commit1(u+ u′, x+ x′),

where the multiplication on the left-hand side is in the group 〈g〉 and the additions on the
right-hand side are in Zn. So, the product of two commitments is a commitment to the sum
of the committed values.

Homomorphic properties turn out to be very useful, e.g., for achieving secure multiparty
computation, as we will see later on. As a concrete example, homomorphic commitments
can be used as a building block for secure election schemes: very roughly, during the voting
stage, voters put their votes into homomorphic commitments, and during the tallying stage,
the votes are counted in a verifiable manner by taking the product of all commitments.

EXERCISE 3.5 Assume the setting of Exercise 1.35. The Quadratic Residuosity (QR) as-
sumption states that the QR problem is hard.

Let y ∈ Jm denote a quadratic non-residue modulo m (e.g., y = −1 is a quadratic non-
residue modulo m when m is a Blum integer, that is, m = pq with p ≡ q ≡ 3 (mod 4)).
Consider the following bit commitment scheme:

commit(u, x) = yxu2 mod m,

where u ∈R Z∗m and x ∈ {0, 1}. In what sense is the scheme binding? In what sense is the
scheme hiding? In what sense is the scheme homomorphic?

3.4 BIBLIOGRAPHIC NOTES

The concept of a commitment scheme emerged in the early 1980s, most notably in the paper
by Blum [Blu82] on “coin flipping by telephone,” which was also used as a motivating example
in the beginning of this chapter. Commitment schemes have been an important cryptographic
primitive ever since.

Pedersen’s commitment scheme first appeared in [Ped92], where it is presented as part of
a non-interactive verifiable secret sharing scheme (see Section 6.2.2).

The impossibility result for a both information theoretically binding and hiding commit-
ment scheme is folklore.

The commitments of Exercise 3.5 correspond to ciphertexts in the Goldwasser-Micali
public-key cryptosystem, which was actually the first probabilistic cryptosystem (see [GM84],
where also the notion of semantic security is introduced and proved to hold for this cryp-
tosystem under the QR assumption).

CHAPTER 4

Identification Protocols

We consider identification protocols between two parties, where one party, called the verifier,
needs to get convinced that the other party, called the prover, is as claimed. A typical
example is when a user wants to gain access to a computer account (secure login), or when
someone needs to enter a secured room.

In general, identification protocols may be based on one or more of the following factors.

• What you are. Biometrics, such as fingerprints, iris scans, etc.

• What you have. Smart cards, SIM cards, or similar hardware tokens.

• What you know. Passwords, PIN codes, secret keys.

In this chapter, we focus on purely cryptographic identification protocols, in which a successful
prover only needs to know some secret key. There are many, many cryptographic constructions
of identification protocols. A general goal is to minimize the computational effort for the
prover and/or the verifier. The security ranges from rather weak for password-based protocols
to strong for zero-knowledge protocols and witness-hiding protocols.

We note that the problem addressed by identification protocols is related to message
authentication (e.g., by means of digital signatures) and also to authenticated key exchange.

Compared to message authentication, an important difference is that there is some notion
of freshness to be fulfilled. On the other hand, compared to digital signatures, there is no such
thing as non-repudiation: it is not required that the verifier is able to convince an outsider at
a later point in time that a prover indeed successfully identified itself to the verifier. In other
words, it is not a requirement that the prover gets an alibi from engaging in an identification
protocol.

Compared to authenticated key exchange, the problem is easier as there is no requirement
for actually establishing a secure (session) key.

4.1 DEFINITIONS

An identification protocol is actually part of an identification scheme. An identification
scheme consists of two protocols, called registration and identification, between two parties,
called the prover and the verifier.

In a basic symmetric identification scheme, registration will end with both parties sharing
a secret key, which both of them need to store securely. In a basic asymmetric identification

27

28 CHAPTER 4 Identification Protocols

scheme, registration will end with both parties sharing a public key, for which only the prover
knows the private key. (In more advanced schemes, also the verifier may have a private key.)
A major advantage of asymmetric schemes is that the prover may use its public key with
several, possibly many, verifiers.

We consider attacks on the identification protocol only. Hence, we assume that the regis-
tration protocol is performed in a secure environment. Furthermore, we consider only cryp-
tographic attacks.1

The basic security requirement for an identification protocol is that it stops imperson-
ation attacks, that is, it should be impossible for an attacker to successfully identify itself
as another party. We distinguish several passive and active impersonation attacks.

The main type of passive impersonation attack is eavesdropping on communication be-
tween a prover and a verifier in legal executions of the identification protocol. Another type
of passive attack is a key-only attack for asymmetric schemes, in which the attacker tries to
find the private key from the public key. However, we will not be concerned with key-only
attacks.

A simple form of active impersonation attack is a guessing attack, in which the attacker
poses as the prover and hopes to make the right guesses, without knowing the prover’s secret
key or private key. The success rate of a guessing attack may be increased considerably by
combining it with a cheating verifier attack, in which the attacker poses as a verifier and
hopes to extract some useful information from the prover by deviating from the protocol.

Finally, the attacker may apply a man-in-the-middle attack: an honest prover P thinks
it runs the identification protocol with verifier V∗ but actually V∗ relays all messages to a
verifier V who thinks it runs the protocol with P. For example, one may identify itself to
open a certain door X but the attacker will have you open another door Y (while you get the
message that there was some malfunctioning at door X).

The man-in-the-middle attack is reminiscent of the so-called grandmaster chess attack, in
which an amateur chess player tries to increase his or her rating by playing correspondence
chess with two grandmasters at the same time. The amateur chess player will engage in a
chess game with both grandmasters, playing white in one game and black in the other one.
Once started, the amateur simply copies all moves from one grandmaster to the other one.
As a result, the amateur will either win one game and lose the other one, or play two draws.
In any event, the amateur’s rating will increase considerably.

We will be concerned mostly with cheating verifier attacks.

4.2 PASSWORD-BASED SCHEMES

The conventional way to login to a computer is to provide a user-id and a password. Upon
registration it is ensured that the prover gets a unique user-id. The prover is also allowed
to pick a password. During identification, the prover sends the user-id and password to the
verifier.

A password scheme is a symmetric identification scheme, supposed to withstand guessing
attacks. One may think of the password as a random bit string in {0, 1}k. If the password is
human-memorizable, the security parameter k is usually rather small, say k ≤ 20. (We will

1Non-cryptographic attacks in which one breaks into the prover’s or verifier’s computer to steal or modify
a key are not considered, as such attacks cannot be stopped by purely cryptographic means. Note that for an
asymmetric scheme it is indeed important that the prover’s public key, as stored by the verifier, is authentic.

§4.3 One-Way Hash Chains 29

not discuss dictionary attacks and related issues.) Clearly, it is possible to withstand guessing
attacks by taking k = 80, but then the password will be harder to memorize.

A password scheme does not withstand eavesdropping attacks at all. Once the password
is intercepted, the scheme is broken.

4.3 ONE-WAY HASH CHAINS

Lamport’s identification scheme provides a relatively easy way to stop eavesdropping attacks
by using so-called (one-way) hash chains. A hash chain of length ` is a sequence of values
xi, 0 ≤ i ≤ `, satisfying xi+1 = H(xi), for 0 ≤ i < `, where H : {0, 1}∗ → {0, 1}k is a
cryptographic hash function.

For registration, the prover picks x0 ∈R {0, 1}k, computes x` = H`(x0), and sends x` to
the verifier. Both the prover and the verifier keep a counter i, initially i = 0. The prover
stores x0 for later use. The verifier keeps a variable v, which is initially set to x`.

For identification, the prover increments counter i, computes x`−i = H`−i(x0) and sends
this value to the verifier. The verifier tests whether H(x`−i) = v. If so, identification is
successful and the verifier increments i and sets v = x`−i; otherwise, the verifier discards the
identification attempt.

Lamport’s identification scheme thus requires the prover and the verifier to remain “in
sync” (cf. counter i), but unlike a completely symmetric scheme, the verifier does not need
to store a secret key.

A key-only attack is infeasible (cf. the random oracle model, Section 1.3.4). The scheme
withstands eavesdropping attacks as interception of a value x`−i does not help the attacker
in succeeding in any of the subsequent runs of the identification protocol.

We do not consider active attacks for this scheme.

REMARK 4.1 Hash chains have been considered for applications in which the length of the
hash chain is very large. For such “ultra long” hash chains one takes, for instance, ` = 232.

For ultra-long hash chains, the naive implementation in which x`−i is computed from x0

in each run of the identification protocol is not acceptable. Similarly, it is not feasible to store
the entire sequence xi, for i = 0, . . . , `− 1.

However, using so-called pebbling algorithms it is possible to achieve the following perfor-
mance. The space complexity is measured as the number of k-bit strings stored, whereas the
time complexity is measured in the number of applications of the hash function H. The prover
uses O(log `) storage, and the verifier uses O(1) storage. For registration the prover spends
O(`) time, and the verifier needs O(1) time. For each run of the identification protocol, the
prover needs O(log `) time, whereas the verifier needs O(1) time.

4.4 BASIC CHALLENGE-RESPONSE PROTOCOLS

We consider four basic challenge-response protocols. In each of these identification protocols,
the verifier starts by sending a random challenge, which the prover answers by sending a
response, which is then checked by the verifier. The schemes are summarized in Figure 4.1.

We will consider eavesdropping attacks and cheating verifier attacks for each of the
schemes.

30 CHAPTER 4 Identification Protocols

Prover Verifier

c ∈R {0, 1}k

←−−−
c
−−−

r ← EK(c)

−−−
r
−−−→

c
?
= DK(r)

(a)

Prover Verifier

c ∈R {0, 1}k

←−−−
c
−−−

r ← H(K, c)

−−−
r
−−−→

r
?
= H(K, c)

(b)

Prover Verifier

M ∈R {0, 1}k
c← Epk(M)

←−−−
c
−−−

r ← Dsk(c)

−−−
r
−−−→

r
?
= M

(c)

Prover Verifier

c ∈R {0, 1}k

←−−−
c
−−−

r ← Ssk(c)

−−−
r
−−−→

Vpk(r, c)?

(d)

FIGURE 4.1: Four basic challenge-response schemes

4.4.1 USING SYMMETRIC ENCRYPTION

Assume that prover and verifier share a symmetric key K ∈R {0, 1}k. Let EK denote an
encryption algorithm using keyK, and letDK denote the corresponding decryption algorithm.
Assume for simplicity that EK , DK : {0, 1}k → {0, 1}k.

See Figure 4.1(a). The identification protocol starts with the verifier sending a challenge
c ∈R {0, 1}k, for which the prover is supposed to return the response r = EK(c). The verifier
checks that indeed DK(r) = c.

To withstand eavesdropping attacks an encryption scheme withstanding known-plaintext
attacks must be used. To withstand cheating verifier attacks, the encryption scheme must
withstand adaptive chosen-plaintext attacks.

EXERCISE 4.2 Consider the alternative protocol in which the verifier challenges the prover
with c = EK(M), where M ∈R {0, 1}k, and for which the prover is supposed to produce
response r = M . Discuss eavesdropping attacks and cheating verifier attacks for this protocol.

4.4.2 USING SYMMETRIC AUTHENTICATION

Assume that prover and verifier share a symmetric key K ∈R {0, 1}k. Let H : {0, 1}∗ →
{0, 1}k denote a cryptographic hash function.

See Figure 4.1(b). The identification protocol starts with the verifier sending a challenge
c ∈R {0, 1}k, for which the prover is supposed to return the response r = H(K, c). The
verifier checks that indeed r = H(K, c).

§4.5 Zero-knowledge Identification Protocols 31

In the random oracle model, the scheme withstands both eavesdropping and cheating
verifier attacks.

4.4.3 USING ASYMMETRIC ENCRYPTION

Assume that prover and verifier share a public key pk for which the prover knows the pri-
vate key sk. Let Epk denote an encryption algorithm using key pk, and let Dsk denote the
corresponding decryption algorithm using key sk.

See Figure 4.1(c). The verifier challenges the prover with c = Epk(M) with M ∈R {0, 1}k,
for which the prover is supposed to produce response r = Dsk(c). The verifier checks that
indeed r = M holds.

To withstand eavesdropping attacks the encryption scheme must be semantically se-
cure. To withstand cheating verifier attacks, the encryption scheme must withstand adaptive
chosen-ciphertext attacks.

4.4.4 USING ASYMMETRIC AUTHENTICATION

Assume that prover and verifier share a public key pk for which the prover knows the private
key sk. Let Ssk denote a signing algorithm using key sk, and let Vpk denote the corresponding
verification algorithm using key pk.

See Figure 4.1(d). The identification protocol starts with the verifier sending a challenge
c ∈R {0, 1}k, for which the prover is supposed to return the response r = Ssk(c). The verifier
checks that indeed Vpk(c, r) holds, that is, whether r is indeed a signature on message c under
public key pk.

To withstand eavesdropping attacks the digital signature scheme must withstand known-
message attacks. To withstand cheating verifier attacks, the digital signature scheme must
withstand adaptive chosen-message attacks.

4.5 ZERO-KNOWLEDGE IDENTIFICATION PROTOCOLS

The schemes of the previous section are secure when used with sufficiently strong encryption or
authentication schemes. The cost of a digital signature scheme withstanding adaptive chosen-
message attack is quite high, though. In addition, the work for the prover for computing the
response may be costly, in particular considering the work the prover needs to do strictly
after receiving the challenge.

In this section we will consider zero-knowledge identification protocols, which will have
the property that no matter what a cheating verifier does, it will not extract any useful
information from the (honest) prover. More precisely, the term “zero-knowledge” refers to
the fact that whatever information the cheating verifier learns from (interacting with) the
prover, that information could have been generated by the cheating verifier on its own—
without interacting with the prover at all. In other words, it is possible to show that the
messages sent by the prover can be (efficiently) simulated without actually involving the
prover. An honest verifier, however, will be convinced that the prover knows the private key,
as required.

32 CHAPTER 4 Identification Protocols

Prover Verifier
(x = logg h)

u ∈R Zn
a← gu −−−−−

a
−−−−−→

c ∈R {0, 1}
←−−−−−

c
−−−−−

r ←n

{
u, if c = 0
u+ x, if c = 1 −−−−−

r
−−−−−→ gr

?
=

{
a, if c = 0
ah, if c = 1

FIGURE 4.2: Schnorr’s zero-knowledge protocol

4.5.1 SCHNORR ZERO-KNOWLEDGE PROTOCOL

As a first example of a zero-knowledge protocol we consider Schnorr’s protocol for proving
knowledge of a discrete logarithm. We will describe the protocol somewhat informally at this
point, as Schnorr’s protocol and similar protocols will be revisited extensively in the next
chapter.

Let 〈g〉 be a group of order n, where n is a large prime. Let x ∈R Zn be the prover’s
private key, and let h = gx be the prover’s public key. The verifier gets the public key h
during the registration protocol. One iteration of Schnorr’s identification protocol is given
in Figure 4.2.2 In total, k iterations are executed between the prover and the verifier, one
after the other, where k is a security parameter. The three-flow structure of (one iteration
of) Schnorr’s protocol is typical of many zero-knowledge protocols; we will refer to the first
message a as the announcement,3 the second message c is called the challenge, and the third
message r is called the response.

We first discuss why Schnorr’s protocol convinces the verifier that the prover indeed knows
x = logg h. This property is called the soundness property. If the prover does not know x,
the best the prover can do is prepare announcement a such that it knows response r either
in the case c = 0 or in the case c = 1. To prepare for answering challenge c = 0, a cheating
prover sets a = gu, and sends r = u as response. And, to prepare for answering challenge
c = 1, a cheating prover sets a = gu/h, and sends the response r = u; then the verification
gr = ah will hold.

The point is that the prover cannot prepare for answering both cases c = 0 and c = 1,
without knowing the private key x. This follows from the following observation. Suppose
that after sending announcement a, a prover is able to respond to both challenges c = 0 and
c = 1 correctly. That is, the prover is able to produce two responses r0 and r1, which are
correct for challenges c = 0 and c = 1, respectively. Then it follows that a, r0, and r1 satisfy

gr0 = a, gr1 = ah,

which implies that

h = gr1−r0 .

2We use x←n E to indicate that x is assigned the value of expression E modulo n.
3Technically, announcement a is a commitment to a nonce u. The nonce u is a secret random value generated

for ephemeral (one-time) use—in contrast with the private key x, which is a secret random value generated
for long-term (repeated) use.

§4.5 Zero-knowledge Identification Protocols 33

But this means that the prover actually knows x, since x = r1 − r0 mod n holds!
Consequently, at each iteration of Schnorr’s protocol a cheating prover “survives” with

probability at most 50% essentially. Thus after k iterations, a cheating prover succeeds with
probability at most 2−k essentially.4

Now, we discuss why Schnorr’s protocol is zero-knowledge. A cheating verifier may
engage many times in the identification protocol, obtaining a conversation (a; c; r) for each
run of the protocol. Here, “many times” means at most O(kγ) times for some constant γ ∈ N
(polynomially bounded in the security parameter k). The cheating verifier thus obtains many
conversations (a; c; r). However, it turns out that the verifier may generate these conversations
completely on its own, without interacting with the prover at all: the verifier may generate
simulated conversations (a; c; r) that follow exactly the same distribution as the conversations
(a; c; r) that occur in executions of the identification protocol with a real prover.

We first consider the zero-knowledge property for the case of an honest verifier V, that is,
the verifier picks c uniformly at random in {0, 1} as prescribed by the protocol. Below, we
present two p.p.t. algorithms, one for generating real conversations (following the protocol),
and one for generating simulated conversations (deviating from the protocol).

Real conversations
Input: private key x
Output: conversation (a; c; r)

1. u ∈R Zn
2. a← gu

3. c ∈R {0, 1}
4. r ←n u+ cx

5. output (a; c; r)

Simulated conversations
Input: public key h
Output: conversation (a; c; r)

1. c ∈R {0, 1}
2. r ∈R Zn
3. a← grh−c

4. output (a; c; r)

Both algorithms generate accepting conversations (a; c; r) uniformly at random, that is,
Pr[(a; c; r) = (A;C;R)] = 1

2n for any triple (A;C;R) ∈ 〈g〉×{0, 1}×Zn satisfying gR = AhC .
The crux is that the real conversations are generated given access to the private key x, whereas
the simulated conversations are generated given access to the public key h only.

REMARK 4.3 The fact that an identification protocol is zero-knowledge against an honest
verifier essentially reduces any passive impersonation attack to a key-only attack (see Sec-
tion 4.1). In particular, eavesdropping conversations between honest provers and verifiers
does not yield anything about a prover’s private key beyond what can be deduced from the
corresponding public key already.

Next, we consider the zero-knowledge property for the general case of any p.p.t. cheating
verifier V∗. We will use probabilistic Turing machine V∗ as a rewindable black-box, which
means (i) that we access V∗ in a black-box manner only, restricted to exchanging messages
with V∗ through its input and output tapes, and (ii) that we can rewind V∗ to any prior
configuration. Recall from Section 1.2.4 that the configuration of a probabilistic Turing
machine is determined by the state of its finite control part, the contents of its tapes (incl.
the random tape) as well as the positions of its tape heads. By rewinding V∗ we can test it
on several input values until a desired output value is obtained.

4It is possible to show in a rigorous way that any p.p.t. cheating prover only succeeds with probability 2−k

plus a further negligible term representing the success probability of finding x = logg h directly.

34 CHAPTER 4 Identification Protocols

Real conversations
Input: private key x
Output: conversation (a; c; r)

1. u ∈R Zn
2. a← gu

3. send a to V∗

4. receive c ∈ {0, 1} from V∗

5. r ←n u+ cx

6. send r to V∗

7. output (a; c; r)

Simulated conversations
Input: public key h
Output: conversation (a; c; r)

1. c ∈R {0, 1}
2. r ∈R Zn
3. a← grh−c

4. send a to V∗

5. receive c′ ∈ {0, 1} from V∗

6. if c 6= c′ rewind V∗ to point prior to
receiving a and go to step 1

7. send r to V∗

8. output (a; c; r)

At step 6 of the simulation, the probability that c = c′ is exactly 1/2, since c ∈R {0, 1}.
Hence, on average two iterations are required to generate a simulated conversation (a; c; r).

The conclusion is that no matter what algorithm (or “strategy”) a cheating verifier V∗
follows in trying to extract useful information from the prover, the same algorithm can be
used to generate identically distributed conversations without needing the cooperation of the
prover. Whereas the real conversations are generated using the private key x as input, the
simulated conversations are generated using only the public key h as input.

4.5.2 SCHNORR PROTOCOL

The protocol of Figure 4.2 is a zero-knowledge protocol. However, as we have argued infor-
mally, the probability that a cheating prover succeeds is 50%. By using k sequential iterations
of this protocol the zero-knowledge property is preserved, but the probability that a cheating
prover succeeds becomes 2−k, which is negligible as a function of k.

The computational complexity of the resulting protocol is rather high, since both the
prover and the verifier need to compute O(k) exponentiations in the group 〈g〉. Therefore,
Schnorr also proposed to use the variant given in Figure 4.3 (which is actually known as
“Schnorr’s protocol”). In this protocol, the verifier picks its challenge from a large range, say
c ∈ Zn.

The soundness property of Schnorr’s protocol can be analyzed similarly as above. Suppose
that a prover is able to answer correctly at least two challenges c and c′, with c 6= c′, after
sending announcement a. That is, the prover is able to produce two valid conversations
(a; c; r) and (a; c′; r′). Then it follows as before that the prover actually knows the discrete
log x = logg h, since

gr = ahc, gr
′

= ahc
′

implies that

h = g(r−r′)/(c−c′).

Therefore, intuitively, after sending announcement a, the prover can answer at most one
challenge correctly, if the prover does not know the private key x. Since there are n possible
values for the challenge, the probability of success is basically bounded above by 1/n, which
is negligibly small.

§4.5 Zero-knowledge Identification Protocols 35

Prover Verifier
(x = logg h)

u ∈R Zn
a← gu

−−−−−
a
−−−−−→

c ∈R Zn
←−−−−−

c
−−−−−

r ←n u+ cx

−−−−−
r
−−−−−→

gr
?
= ahc

FIGURE 4.3: Schnorr’s identification protocol

The zero-knowledge property can also be proved for Schnorr’s protocol similarly as above
for the case of an honest verifier V. The distributions of the real conversations and of the
simulated conversations are respectively:

{(a; c; r) : u, c ∈R Zn; a← gu; r ←n u+ cx},
{(a; c; r) : c, r ∈R Zn; a← grh−c}.

These distributions are identical. (Each valid conversation (a; c; r) (satisfying c, r ∈ Zn and
gr = ahc) occurs with probability 1/n2.)

In trying to simulate conversations for an arbitrary verifier V∗, we run into a problem.
We may use the same algorithm as before, first picking c, r ∈R Zn, setting a = grh−c, feeding
a to V∗ and then hoping that the c′ returned by V∗ matches c. However, Pr[c = c′] = 1/n
which is negligibly small, and it will take n tries on average to find a valid conversation this
way. In other words, the running time of the simulator is O(n), which is exponentially large.

In conclusion, Schnorr’s protocol is sound and honest-verifier zero-knowledge. Although
it cannot be proved zero-knowledge in general, no attacks are known for this protocol, hence
it can be used as an identification protocol, if so desired.

Later, we will see how to obtain so-called Schnorr signatures from Schnorr’s identification
protocol. At this point, we remark that if one could prove that Schnorr’s protocol is zero-
knowledge then it would follow that Schnorr signatures can be forged. In a way it is therefore
good that Schnorr’s protocol is not zero-knowledge.

4.5.3 GUILLOU-QUISQUATER PROTOCOL

The identification protocol by Guillou and Quisquater is similar to Schnorr’s protocol, except
that it is defined in an RSA setting instead of a DL setting.

Let m = pq be an RSA modulus, that is, p and q are large, distinct primes of bit length
k, for security parameter k. Let e be a positive integer satisfying gcd(e, φ(m)) = 1, where
φ(m) = (p− 1)(q − 1). (See Exercise 1.34.) As an additional requirement for e we have that
e is a large prime such that 1/e is negligible in security parameter k. For example, e may be
a 128-bit prime.

36 CHAPTER 4 Identification Protocols

Prover Verifier

(x = y1/e mod m)

u ∈R Z∗m
a←m ue

−−−−−
a
−−−−−→

c ∈R Ze
←−−−−−

c
−−−−−

r ←m uxc

−−−−−
r
−−−−−→

re
?
=m ayc

FIGURE 4.4: Guillou-Quisquater’s identification protocol

Recall that the RSA problem is to compute x = y1/e mod m given y ∈ Z∗m, which is
assumed to be hard for sufficiently large values of k. For Guillou-Quisquater’s protocol (Fig-
ure 4.4), the private key of the prover is therefore a number x ∈ Z∗m, and the corresponding
public key is y = xe mod m. One can easily verify that the verifier indeed accepts if the
prover follows the protocol, as we have (modulo m):

re = (uxc)e = ue(xe)c = ayc.

The security properties of Guillou-Quisquater’s protocol are as follows. The soundness
property holds as the success probability of a cheating prover is basically bounded by 1/e for
the following reason. Suppose that a prover is able to answer two distinct challenges c, c′ ∈ Ze
correctly, after sending announcement a to the verifier. In other words, suppose a prover is
able to produce two accepting conversations (a; c; r) and (a; c′; r′), with c 6= c′. Then we have
(modulo m):

re = ayc, r′e = ayc
′
,

which implies
(r/r′)e = yc−c

′
.

To isolate y in this equation, we note that gcd(e, c − c′) = 1, since e is prime and c, c′ ∈
Ze, c 6= c′. By the extended Euclidean algorithm integers s, t can thus be computed efficiently
satisfying se+ t(c− c′) = 1. Raising both sides of the equation to the power t we get:

(r/r′)te = yt(c−c
′) = y1−se,

hence
y = (ys(r/r′)t)e.

Summarizing, given accepting conversations (a; c; r), (a; c′; r′), where c 6= c′, the private key
x can be computed as x = ys(r/r′)t mod m, where s, t satisfy se+ t(c− c′) = 1 (as obtained
by the extended Euclidean algorithm).

The protocol is honest-verifier zero-knowledge, since the distributions of the real conver-
sations and of the simulated conversations are identical:

{(a; c; r) : u ∈R Z∗m; c ∈R Ze; a←m ue; r ←m uxc},
{(a; c; r) : c ∈R Ze; r ∈R Z∗m; a←m rey−c}.

§4.6 Witness Hiding Identification Protocols 37

Each valid conversation (a; c; r) (satisfying c ∈ Ze, r ∈ Z∗m and re =m ayc) occurs with
probability 1/(eφ(m)).

REMARK 4.4 Note that the prover does not need to know the factorization of m. This fact
can be exploited by letting several users share the same modulus m. It is even possible to make
the identification scheme identity-based, which means that the public keys of the users can be
computed as a (deterministic) function of their identities. For example, the public key yA of
a user A whose identity is represented by a string IDA, can be computed as yA = H(IDA),
where H is an appropriate cryptographic hash function. The string IDA may consist of the
user’s name and/or email address.

A trusted third party T is required to compute the private key of each user. Only T will
know the factorization of the modulus m. Hence, T is able to compute user A’s private key
as xA = H(IDA)1/e mod m.

The advantage of an identity-based scheme is that the public keys of users need not be
certified anymore by a digital signature from T . A disadvantage is that T is able to compute
the private key of every user. However, this problem may be alleviated by distributing the role
of T between many parties, using threshold cryptography (see Chapter 6).

4.6 WITNESS HIDING IDENTIFICATION PROTOCOLS

Schnorr’s identification protocol is quite efficient, but it can be proved zero-knowledge only
for an honest verifier. By using k iterations of Schnorr’s protocol (with binary challenges),
the resulting protocol is zero-knowledge for arbitrary verifiers, but, clearly, the computational
complexity of the protocol also increases by a factor of k.

Witness hiding identification protocols strike a nice balance between security and effi-
ciency. Consider a protocol that satisfies the soundness property as described above. It
follows that a prover can only be successful if it actually knows the complete private key.
So, the only problem we need to care about is that a cheating verifier is not able to learn
the complete private key. Therefore, an identification protocol is called witness hiding if a
cheating verifier is not able to obtain the prover’s private key by interacting with the prover.

If a protocol is witness hiding, it is not necessarily zero-knowledge (but the converse is
always true). A cheating verifier may be able to extract some partial information on the
private key, but the amount of information it is able to get is not sufficient for successful
impersonation of the prover.

4.6.1 OKAMOTO PROTOCOL

As before, let 〈g〉 be a group of order n, where n is a large prime. In addition, let g1, g2 ∈ 〈g〉
be given such that logg1 g2 is not known to anybody. (If g1, g2 are picked uniformly at
random in 〈g〉 then logg1 g2 is not known under the DL assumption.) Let x1, x2 ∈R Zn be the
prover’s private key, and let h = gx11 gx22 be the prover’s public key. Okamoto’s protocol,
see Figure 4.5, may be viewed as a variation of Schnorr’s protocol. The computational
complexity of Okamoto’s protocol and of Schnorr’s protocol only differ by a constant factor.
Also, Okamoto’s protocol satisfies the same properties of soundness and honest-verifier zero-
knowledgeness as Schnorr’s protocol. The important difference is that Okamoto’s protocol
can be proved to be witness hiding.

We first note the following property. For a given public key h (and given generators g1, g2)
there are exactly n possible pairs (x1, x2) ∈ Zn × Zn satisfying h = gx11 gx22 . Since if one fixes

38 CHAPTER 4 Identification Protocols

Prover Verifier
(h = gx11 gx22)

u1, u2 ∈R Zn
a← gu11 gu22

−−−−−
a
−−−−−→

c ∈R Zn
←−−−−−

c
−−−−−

r1 ←n u1 + cx1

r2 ←n u2 + cx2 −−−
r1, r2
−−−−−−→

gr11 g
r2
2

?
= ahc

FIGURE 4.5: Okamoto’s identification protocol

any x1 ∈ Zn, the corresponding x2 is uniquely defined by x2 = logg2(h/gx11). Such a pair
(x1, x2) is referred to as a witness.

The prover’s private key is one such witness (x1, x2). A crucial property of Okamoto’s
protocol is that it is witness indistinguishable, as the conversations seen by an arbitrary,
possibly cheating, verifier are (statistically) independent of the particular witness used by the
prover.

To see that Okamoto’s protocol is witness indistinguishable we argue as follows. Let
(a; c; r1, r2) be a conversation between an (honest) prover P(x1,x2) using witness (x1, x2) and
a possibly cheating verifier V∗, and let u1, u2 be the corresponding random numbers used by
P(x1,x2). Now, consider another witness (x′1, x

′
2). Then there exist unique values u′1, u

′
2 ∈ Zn

that yield the same conversation for a prover P(x′1,x
′
2) using witness (x′1, x

′
2):

u′1 ←n u1 + c(x1 − x′1),

u′2 ←n u2 + c(x2 − x′2).

Indeed,

a′ = g
u′1
1 g

u′2
2 = gu11 gu22 (gx11 gx22)c/(g

x′1
1 g

x′2
2)c = a,

and (modulo n)

r′1 = u′1 + cx′1 = u1 + c(x1 − x′1) + cx′1 = r1,

r′2 = u′2 + cx′2 = u2 + c(x2 − x′2) + cx′2 = r2.

Phrased slightly differently: for each combination of a conversation (a; c; r1, r2) between an
honest prover P and a possibly cheating verifier V∗, and a possible witness (x′1, x

′
2) satisfying

h = g
x′1
1 g

x′2
2 , there exist unique u′1, u

′
2 satisfying a = g

u′1
1 g

u′2
2 , r1 =n u

′
1 +cx′1, and r′2 =n u

′
2 +cx′2.

This implies that Okamoto’s protocol is witness indistinguishable.
Now, suppose that a cheating verifier V∗ is able to find a witness (x′1, x

′
2) after interacting

with a given prover P(x1,x2) polynomially many times. Since Okamoto’s protocol is witness
indistinguishable, it follows that the witness (x′1, x

′
2) found by V∗ will be equal to the witness

used by P(x1,x2) with probability exactly equal to 1/n. In other words, with probability close
to 1, the two witnesses will be different.

§4.7 Bibliographic Notes 39

However, now viewing the prover P(x1,x2) and the verifier V∗ as one “big” p.p.t. algorithm
E , it follows that E is able to compute two pairs (x1, x2) 6= (x′1, x

′
2) satisfying

h = gx11 gx22 , h = g
x′1
1 g

x′2
2 .

But this implies that

g2 = g
(x′1−x1)/(x′2−x2)
1 ,

hence that E computed logg1 g2, which we assumed to be infeasible.
In conclusion, under the DL assumption, Okamoto’s protocol is witness hiding, which

means that no p.p.t. verifier is able to extract a prover’s private key.

4.7 BIBLIOGRAPHIC NOTES

Many identification schemes have been proposed throughout the cryptographic literature.
Lamport’s identification scheme using hash chains is from [Lam81], building on the idea of

iterated hash functions which is attributed to Winternitz (see [Mer87, Mer89], where Merkle
refers to a personal communication with Winternitz). The use of ultra long hash chains (see
Remark 4.1) is from Jakobsson [Jak02] (see also [CJ02]), building on the pebbling algorithm
of [IR01] for efficient key updates in a forward-secure digital signature scheme. See [Sch14]
for optimal binary pebbling algorithms, for which the prover stores at most log2 ` hash values
and uses at most 1

2 log2 ` hashes in each run of Lamport’s identification protocol. Also,
see [Szy04] for extended techniques to generate the successive authentication paths when
traversing Merkle trees (“hash trees”).

The concept of zero-knowledge was formally introduced by Goldwasser, Micali, and Rack-
off [GMR89], soon after the first such protocol was presented at Eurocrypt 1984 by Fis-
cher, Micali, and Rackoff [FMR96], and is now more broadly referred to as the simulation
paradigm. A practical scheme for zero-knowledge identification was first presented by Fiat and
Shamir [FS87], followed by the slightly improved scheme of Feige, Fiat, and Shamir [FFS88].
Guillou-Quisquater’s protocol is from [GQ88], and Schnorr’s protocol is from [Sch91]. For
more on zero-knowledge proofs, see the next chapter.

The notions of witness indistinguishable and witness hiding protocols are due to Feige
and Shamir [FS90], who also gave applications to identification. The elegant and efficient
variation of Schnorr’s identification protocol is due to Okamoto [Oka93].

CHAPTER 5

Zero-Knowledge Proofs

Zero-knowledge proofs are a general class of protocols between two parties, called the prover
and the verifier. By means of a zero-knowledge proof, the prover convinces the verifier of
the validity of a given statement without revealing any information beyond the truth of the
statement.

In zero-knowledge identification protocols, the statement proved is something like “I know
the private key for this public key.” But much more involved statements are possible, such
as “I know the private key for this public key or for that public key, and that in any case
the private keys are different.” In fact, the theory of zero-knowledge proofs tells us that
any NP-statement can be proved efficiently in zero-knowledge (see also Exercise 5.20 and
Exercise 5.21).

5.1 Σ-PROTOCOLS

The notion of a Σ-protocol generalizes the identification protocols by Schnorr, Guillou-
Quisquater, and Okamoto covered in the previous chapter, as well as many other ones known
from the literature (such as Fiat-Shamir’s and Feige-Fiat-Shamir’s protocols, see Section 4.7).
A Σ-protocol is required to be zero-knowledge against an honest verifier only. Despite this
limitation, Σ-protocols will turn out to be versatile building blocks, and their use will become
apparent later on.

For technical reasons, a Σ-protocol is actually required to be special honest-verifier zero-
knowledge, which means that the simulator will take a challenge c, say, as an additional input
and then produce conversations with the specified challenge c. It is easily checked that the
protocols mentioned above are all special honest-verifier zero-knowledge.

Let R = {(v;w)} ⊆ V ×W be a binary relation, where v ∈ V denotes the common input
to the prover and the verifier, and w ∈ W denotes a witness, which is the private input
to the prover. Let LR = {v ∈ V : ∃w∈W (v;w) ∈ R} denote the language corresponding to
relation R.1

1Language LR will usually be an NP language, hence relation R will be an NP-relation. This means that
determining whether (v;w) ∈ R holds for given (v;w) ∈ V ×W is in P, that is, in deterministic polynomial
time in the size of v one can determine whether (v;w) ∈ R holds.

More generally, LR can be an MA language, where MA is the complexity class of Merlin-Arthur languages.
MA contains both NP and BPP. To decide if v ∈ LR holds, Merlin (the prover) sends w to Arthur (the
verifier), where the size of w is bounded by a polynomial in the size of v for all (v;w) ∈ R, and the verifier is
a p.p.t. algorithm.

40

§5.1 Σ-Protocols 41

Prover P Verifier V
((v;w) ∈ R) (v ∈ V)

a← α(v;w;uP)

−
announcement a
−−−−−−−−−−−−−−→

c ∈R C

←−−−
challenge c
−−−−−−−−−−−

r ← ρ(v;w; c;uP)

−−−
response r
−−−−−−−−−−−→

ϕ(v; a; c; r)?

Conversation (a; c; r) accepting if ϕ(v; a; c; r) holds.
Polynomial time predicate ϕ, finite set C 6= ∅,
random tape uP , p.p.t. algorithms α and ρ.

FIGURE 5.1: Σ-protocol for relation R

DEFINITION 5.1 A Σ-protocol for relation R is a protocol between a prover P and a
verifier V of the form given in Figure 5.1 satisfying the following three properties.

Completeness. If P and V follow the protocol, then V always accepts.

Special soundness. There exists a p.p.t. algorithm E (extractor) which given any v ∈ V
and any pair of accepting conversations (a; c; r) and (a; c′; r′) with c 6= c′ computes a
witness w satisfying (v;w) ∈ R.

Special honest-verifier zero-knowledgeness. There exists a p.p.t. algorithm S (simu-
lator) which given any v ∈ LR and any challenge c ∈ C produces conversations (a; c; r)
with the same probability distribution as conversations between honest P and V on
common input v and challenge c, where P uses any witness w satisfying (v;w) ∈ R.
Furthermore, given any v ∈ V \LR, simulator S is just required to produce arbitrary
accepting conversations (a; c; r), for any given challenge c ∈ C.

If C consists of a single element, the Σ-protocol is said to be trivial.

It can be proved rigorously that special soundness implies that a cheating prover succeeds
with probability at most 1/n essentially, where n denotes the cardinality of the challenge
space C. Hence, assuming that n is sufficiently large, a Σ-protocol proves knowledge of a
witness w for a public input v.

As can be seen from the following proposition, the special honest-verifier zero-knowledge
property is not much stronger than (plain) honest-verifier zero-knowledgeness. For conve-
nience, we let (C,+) be an additive finite group.

PROPOSITION 5.2 The transformed protocol in Figure 5.2 is a Σ-protocol for relation
R, provided that the original protocol as given in Figure 5.1 satisfies completeness, special
soundness, and plain honest-verifier zero-knowledgeness.

PROOF Completeness holds because α, ρ, and ϕ are applied in the same way as in the
original protocol with c replaced by cP + cV .

42 CHAPTER 5 Zero-Knowledge Proofs

Prover Verifier
((v;w) ∈ R) (v ∈ V)

a← α(v;w;uP)

cP ∈R C −−−
a, cP
−−−−−−→

cV ∈R C

←−−−−
cV
−−−−−

r ← ρ(v;w; cP + cV ;uP)

−−−−−
r
−−−−−→

ϕ(v; a; cP + cV ; r)?

FIGURE 5.2: Transformed Σ-protocol for relation R

For special soundness, consider two accepting conversations (a, cP ; cV ; r) and (a, cP ; c′V ; r′)
with cV 6= c′V . Define c = cP + cV and c′ = cP + c′V . Then (a; c; r) and (a; c′; r′) are two
accepting conversations for the original protocol with c 6= c′, hence special soundness implies
that a witness w can be obtained efficiently.

Finally, for special honest-verifier zero-knowledgeness, let S be a simulator for the original
protocol. The simulator for the transformed protocol proceeds as follows. For any given
challenge cV , generate an accepting conversation (a; c; r) using simulator S on input v, and
put cP = c− cV . The simulated conversation is defined as (a, cP ; cV ; r), which is accepting by
construction. Moreover, if v ∈ LR, honest-verifier zero-knowledgeness of the original protocol
implies that (a; c; r) follows the distribution of conversations of the original protocol. Hence,
in particular, c ∈ C is distributed uniformly at random. Therefore, cP is also uniformly
random, and (a, cP ; cV ; r) exactly follows the distribution of conversations of the transformed
protocol. �

The particular way in which Definition 5.1 treats the case v ∈ V \LR is chosen in order to
streamline OR-composition covered in the next section. For special soundness, extractor E is
required to output a witness w for any v ∈ V , given any pair of accepting conversations with
identical announcements but different challenges—which implies that such pairs of conversa-
tions cannot exist (or cannot be found efficiently under some computational assumption) if
v ∈ V \LR. Similarly, for special honest-verifier zero-knowledgeness, simulator S is required to
output an accepting conversation for any v ∈ V—without any constraints on the distribution
of these conversations if v ∈ V \LR.

As a simple illustration we show that Schnorr’s protocol (see Figure 4.3) is a Σ-protocol
for proving knowledge of a witness x ∈ Zn satisfying h = gx. Note that from now on we will
not explicitly indicate anymore that all calculations involving elements of the finite field Zn
are actually done modulo n (e.g., “c 6= c′” is short for “c 6= c′ mod n,” and hence division by
c− c′ is well-defined modulo n).

PROPOSITION 5.3 The protocol in Figure 4.3 is a Σ-protocol for relation {(h;x) : h = gx}.
PROOF Completeness clearly holds, as

gr = gu+cx = gu(gx)c = ahc,

using that the prover computes r such that r = u+ cx.

§5.1 Σ-Protocols 43

Prover Verifier
(x = logg h)

u ∈R Z∗n
a← gu −−−−−

a
−−−−−→

c ∈R Zn
←−−−−−

c
−−−−−

r ←n cu+ x

−−−−−
r
−−−−−→

gr
?
= ach

FIGURE 5.3: Insecure variant of Schnorr’s protocol

For special soundness, we note that given accepting conversations (a; c; r) and (a; c′; r′)
with c 6= c′, we have:

gr = ahc, gr
′

= ahc
′

⇒ gr−r
′

= hc−c
′

⇔ h = g
r−r′
c−c′

Hence, the witness is obtained as x = (r − r′)/(c− c′).
Finally, to show special honest-verifier zero-knowledgeness, the distributions for the con-

versations with an honest verifier (following the protocol, using witness x as input) and the
simulated conversations (deviating from the protocol, using only common input h) are, re-
spectively:

{(a; c; r) : u ∈R Zn; a← gu; r ←n u+ cx},
{(a; c; r) : r ∈R Zn; a← grh−c},

given an arbitrary challenge c. These distributions are identical (each conversation occurs
exactly with probability 1/n). �

EXERCISE 5.4 To understand why honest-verifier zero-knowledgeness does not imply zero-
knowledgeness for arbitrarily cheating verifiers, consider the protocol given in Figure 5.3.
Show that the protocol is complete, special sound, and honest-verifier zero-knowledge. Also,
show that the protocol is completely insecure against a cheating verifier.

EXERCISE 5.5 The protocol in Figure 5.3 avoids the case u = 0, but this is not essential.
Show that the protocol remains complete, special sound, and honest-verifier zero-knowledge
(and insecure against a cheating verifier) if one uses u ∈R Zn instead of u ∈R Z∗n, by exhibiting
a slightly more involved simulation.

REMARK 5.6 By applying the transformation of Proposition 5.2 to the protocol in Figure 5.3,
we obtain a Σ-protocol which is completely insecure against a cheating verifier.

44 CHAPTER 5 Zero-Knowledge Proofs

Prover Verifier
(x = logg h)

u1, u2 ∈R Zn
a1 ← gu1

a2 ← gu2 −−−
a1, a2
−−−−−−−→

c1, c2 ∈R Zn
←−−−

c1, c2
−−−−−−

r1 ←n u1 + c1x

r2 ←n u2 + c2x −−−
r1, r2
−−−−−−→

gr1
?
= a1h

c1

gr2
?
= a2h

c2

FIGURE 5.4: Parallel composition of Schnorr’s protocol

5.2 COMPOSITION OF Σ-PROTOCOLS

By means of examples we introduce five forms of composition of Σ-protocols: parallel composi-
tion,2 AND-composition, EQ-composition, OR-composition, and NEQ-composition. We will
use Schnorr’s protocol as the basic Σ-protocol for constructing more advanced Σ-protocols.

5.2.1 PARALLEL COMPOSITION

Running two instances of a non-trivial Σ-protocol for relation R in parallel results in a Σ-
protocol for R with a larger challenge space.

Figure 5.4 shows the parallel composition of two instances of Schnorr’s protocol for proving
knowledge of x = logg h.

PROPOSITION 5.7 The protocol in Figure 5.4 is a Σ-protocol for relation {(h;x) : h = gx}.
PROOF Completeness follows immediately from the completeness of Schnorr’s protocol.
More concretely, we have:

gr1 = gu1+c1x = gu1(gx)c1 = a1h
c1 ,

gr2 = gu2+c2x = gu2(gx)c2 = a2h
c2 ,

using that the prover computes r1 and r2 such that r1 = u1 + c1x and r2 = u2 + c2x.
To show special soundness, let (a1, a2; c1, c2; r1, r2) and (a1, a2; c′1, c

′
2; r′1, r

′
2) be two ac-

cepting conversations with (c1, c2) 6= (c′1, c
′
2). Then c1 6= c′1 and/or c2 6= c′2. If c1 6= c′1,

it follows from the special soundness of Schnorr’s protocol that the witness is obtained as
x = (r1 − r′1)/(c1 − c′1). More concretely, we have:

gr1 = a1h
c1 , gr

′
1 = a1h

c′1

⇒ gr1−r
′
1 = hc1−c

′
1

⇔ h = g
r1−r

′
1

c1−c′1 .

2Parallel composition is also known as parallel repetition.

§5.2 Composition of Σ-Protocols 45

Prover Verifier
(x1 = logg h1, x2 = logg h2)

u1, u2 ∈R Zn
a1 ← gu1

a2 ← gu2 −−−
a1, a2
−−−−−−−→

c ∈R Zn
←−−−−−

c
−−−−−

r1 ←n u1 + cx1

r2 ←n u2 + cx2 −−−
r1, r2
−−−−−−→

gr1
?
= a1h

c
1

gr2
?
= a2h

c
2

FIGURE 5.5: AND-composition of Schnorr’s protocol

Similarly, if c2 6= c′2, the (same) witness is obtained as x = (r2 − r′2)/(c2 − c′2). Hence, the
witness x satisfying h = gx can be recovered in either case.

Finally, special honest-verifier zero-knowledgeness follows from the fact that the Schnorr
protocol is so, and parallel composition uses two independent runs of Schnorr’s protocol.
More concretely, we have that for an arbitrary (fixed) challenge (c1, c2), the distribution of
the real conversations is identical to the distribution of the simulated conversations, which
are respectively given by

{(a1, a2; c1, c2; r1, r2) : u1, u2 ∈R Zn; a1 ← gu1 ; a2 ← gu2 ; r1 ←n u1+c1x; r2 ←n u2+c2x},
{(a1, a2; c1, c2; r1, r2) : r1, r2 ∈R Zn; a1 ← gr1h−c1 ; a2 ← gr2h−c2}.

Note that in both cases each conversation occurs exactly with probability 1/n2. �

5.2.2 AND-COMPOSITION

Given two relations R1 = {(v1;w1)} and R2 = {(v2;w2)}, a Σ-protocol is obtained for relation
R1 ∧ R2 := {(v1, v2;w1, w2) : (v1;w1) ∈ R1, (v2;w2) ∈ R2} by running a Σ-protocol for R1

and a Σ-protocol for R2 in parallel, using a common challenge (assuming that both protocols
use the same challenge space).

Given two public keys h1 and h2, a proof of knowledge of both logg h1 and logg h2 is
obtained, by running two instances of Schnorr’s protocol in parallel, using a common challenge,
as shown in Figure 5.5.

PROPOSITION 5.8 The protocol in Figure 5.5 is a Σ-protocol for relation

{(h1, h2;x1, x2) : h1 = gx1 , h2 = gx2}.

PROOF Completeness is easily seen to hold, as

gr1 = gu1+cx1 = gu1(gx1)c = a1h
c
1,

gr2 = gu2+cx2 = gu2(gx2)c = a2h
c
2.

46 CHAPTER 5 Zero-Knowledge Proofs

Prover Verifier
(x1 = logg h1, x2 = logg h2)

u ∈R Zn
a← gu

−−−−−
a
−−−−−→

c ∈R Zn
←−−−−−

c
−−−−−

r ←n u+ cx1 + c2x2

−−−−−
r
−−−−−→

gr
?
= ahc1h

c2
2

FIGURE 5.6: Alternative to AND-composition of Schnorr’s protocol?

Special soundness is proved as follows. Given accepting conversations (a1, a2; c; r1, r2) and
(a1, a2; c′; r′1, r

′
2) with c 6= c′, we have:

gr1 = a1h
c
1, gr

′
1 = a1h

c′
1

⇒ gr1−r
′
1 = hc−c

′

1

⇔ h1 = g
r1−r

′
1

c−c′ .

By symmetry, we also have:

h2 = g
r2−r

′
2

c−c′ .

The witness (x1, x2) is thus obtained as x1 = (r1 − r′1)/(c− c′) and x2 = (r2 − r′2)/(c− c′).
Finally, for special honest-verifier zero-knowledgeness, let c be a given challenge. The

honest-verifier distribution and simulated distribution are, respectively:

{(a1, a2; c; r1, r2) : u1, u2 ∈R Zn; a1 ← gu1 ; a2 ← gu2 ; r1 ←n u1 + cx1; r2 ←n u2 + cx2},
{(a1, a2; c; r1, r2) : r1, r2 ∈R Zn; a1 ← gr1h−c1 ; a2 ← gr2h−c2 }.

These distributions are identical, each conversation occurring with probability 1/n2. �

EXERCISE 5.9 By considering the special soundness property, explain why running Schnorr’s
protocol for h1 in parallel to Schnorr’s protocol for h2 does not yield a Σ-protocol for relation
{(h1, h2;x1, x2) : h1 = gx1 , h2 = gx2}. Hint: consider a prover who knows x1 = logg h1 but
does not know x2 = logg h2.

EXERCISE 5.10 Consider the protocol in Figure 5.6 as a possible Σ-protocol for relation
{(h1, h2;x1, x2) : h1 = gx1 , h2 = gx2}. (i) Show that the protocol is complete and special
honest-verifier zero-knowledge. (ii) Why does special soundness not hold for this protocol?
Hint: consider a prover who knows x1 = logg h1 but does not know x2 = logg h2. (iii) Show
that soundness holds in the following sense: for any (h1, h2) ∈ 〈g〉×〈g〉, given three accepting
conversations (a; c; r), (a; c′; r′), (a; c′′; r′′) with c 6= c′, c 6= c′′, c′ 6= c′′ one can efficiently
compute witness (x1, x2) satisfying h1 = gx1 and h2 = gx2 .

§5.2 Composition of Σ-Protocols 47

Prover Verifier
(x = logg1 h1 = logg2 h2)

u ∈R Zn
a1 ← gu1
a2 ← gu2 −−−

a1, a2
−−−−−−−→

c ∈R Zn
←−−−−−

c
−−−−−

r ←n u+ cx

−−−−−
r
−−−−−→

gr1
?
= a1h

c
1

gr2
?
= a2h

c
2

FIGURE 5.7: EQ-composition of Schnorr’s protocol

5.2.3 EQ-COMPOSITION

As another important example of composition of Σ-protocols, we consider a special case of
AND-composition, in which the prover uses a common witness for two instances of a relation.
That is, we give a Σ-protocol for relation {(v1, v2;w) : (v1;w) ∈ R, (v2;w) ∈ R}, given a
Σ-protocol for relation R.

The basic idea is to use AND-composition of the Σ-protocol for R, but this time the prover
uses the same random tape uP (see Figure 5.1) in both cases (and the same witness w).

We give an example based on Schnorr’s protocol. Note that it does not make much sense
to consider a single generator g and two public keys h1 and h2, for which we prove knowledge
of an x such that x = logg h1 = logg h2: this would imply that h1 = h2. Therefore, we will
work with two generators g1, g2.

Given two public keys g1, h1 and g2, h2, one proves knowledge of x = logg1 h1 = logg2 h2,
by running two instances of the Schnorr protocol in parallel, using a common random choice,
a common challenge and a common response.

PROPOSITION 5.11 The protocol in Figure 5.7 is a Σ-protocol for relation

{(g1, h1, g2, h2;x) : h1 = gx1 , h2 = gx2}.

PROOF Completeness is easily checked:

gr1 = gu+cx
1 = gu1 (gx1)c = a1h

c
1,

gr2 = gu+cx
2 = gu2 (gx2)c = a2h

c
2.

To show special soundness, consider accepting conversations (a1, a2; c; r) and (a1, a2; c′; r′)
with c 6= c′. Then we have:

gr1 = a1h
c
1, gr2 = a2h

c
2, gr

′
1 = a1h

c′
1 , gr

′
2 = a2h

c′
2

⇒ gr−r
′

1 = hc−c
′

1 , gr−r
′

2 = hc−c
′

2

⇔ h1 = g
r−r′
c−c′
1 , h2 = g

r−r′
c−c′
2 .

48 CHAPTER 5 Zero-Knowledge Proofs

Prover Verifier

(using x1 = logg h1) (using x2 = logg h2)

c2, r2, u1 ∈R Zn c1, r1, u2 ∈R Zn
a1 ← gu1 a1 ← gr1h−c11

a2 ← gr2h−c22 a2 ← gu2 −−−
a1, a2
−−−−−−−→

c ∈R Zn
←−−−−

c
−−−−

c1 ←n c− c2 c2 ←n c− c1

r1 ←n u1 + c1x1 r2 ←n u2 + c2x2 −
c1, c2, r1, r2
−−−−−−−−−→ c1 + c2

?
=n c

gr1
?
= a1h

c1
1

gr2
?
= a2h

c2
2

FIGURE 5.8: OR-composition of Schnorr’s protocol

Hence, the witness is obtained as x = (r − r′)/(c− c′).
Finally, for special honest-verifier zero-knowledgeness, let c be any given challenge. The

distributions for the conversations with an honest verifier and the simulated conversations
are, respectively:

{(a1, a2; c; r) : u ∈R Zn; a1 ← gu1 ; a2 ← gu2 ; r ←n u+ cx},
{(a1, a2; c; r) : r ∈R Zn; a1 ← gr1h

−c
1 ; a2 ← gr2h

−c
2 },

These distributions are identical provided logg1 h1 = logg2 h2, cf. Definition 5.1; furthermore,
if logg1 h1 6= logg2 h2, the simulated conversations are accepting, as required. �

5.2.4 OR-COMPOSITION

Our next goal is to construct a Σ-protocol for relation R1 ∨R2 = {(v1, v2;w1, w2) : (v1;w1) ∈
R1∨ (v2;w2) ∈ R2}, given Σ-protocols for relations R1 and R2. This turns out to be possible,
using a Σ-protocol of similar complexity as used for AND-composition.

Suppose that the prover knows a witness (w1, w2) with (v1;w1) ∈ R1. Hence, the prover
knows a witness for R1 ∨ R2. The prover is able to run the Σ-protocol for R1. However,
the prover need not be able to do so for R2 as it need not know a witness w2 such that
(v2;w2) ∈ R2. Of course, if the prover knows a witness (w1, w2) with (v2;w2) ∈ R2 and
possibly (v1;w1) 6∈ R1 the same problem arises.

The way out is that the verifier may let the prover “cheat” a little bit by allowing the
prover to use the simulator of the Σ-protocol for the relation Ri for which the prover does
not know witness wi (i = 1 or i = 2). The verifier will do so by providing a single challenge
c which the prover is allowed to split into two challenges c1, c2 provided c1, c2 satisfy a linear
constraint in terms of c. For example, the constraint may be c = c1 ⊕ c2 if the challenges
happen to be bit strings. Essentially, the prover gets one degree of freedom to cheat.

Given two public keys h1 and h2, a proof of knowledge of either x1 = logg h1 or x2 = logg h2

(or, possibly, both) is obtained, by composing one run of Schnorr’s protocol with one run of the

§5.2 Composition of Σ-Protocols 49

simulator for Schnorr’s protocol, as shown in Figure 5.8. The respective challenges c1, c2 ∈ Zn
must sum to c (modulo n). If the prover knows x1 it follows the steps on the left-hand side of
the vertical bar. The values (a1; c1; r1) are generated as in a normal run of Schnorr’s protocol
(note that c1 ∈R Zn since c ∈R Zn). The values (a2; c2; r2) are simulated. If the prover knows
x2, it is the other way around.

PROPOSITION 5.12 The protocol in Figure 5.8 is a Σ-protocol for relation

{(h1, h2;x1, x2) : h1 = gx1 ∨ h2 = gx2}.

PROOF To show completeness, consider the case that the prover uses x1. Then we have
(modulo n):

c1 + c2 = c− c2 + c2 = c,

and also, by inspection of the protocol,

gr1 = gu1+c1x1 = gu1(gx1)c1 = a1h
c1
1 ,

gr2 = a2h
c2
2 .

Similarly, completeness also holds if the prover uses x2.

Next, we show special soundness. Suppose accepting conversations (a1, a2; c; c1, c2, r1, r2)
and (a1, a2; c′; c′1, c

′
2, r
′
1, r
′
2) are given, with c 6= c′. Since c = c1 + c2 6= c′1 + c′2 = c′, it follows

that c1 6= c′1 or c2 6= c′2 (or, possibly, both). We also have:

gr1 = a1h
c1
1 , gr2 = a2h

c2
2 , gr

′
1 = a1h

c′1
1 , gr

′
2 = a2h

c′2
2

⇒ gr1−r
′
1 = h

c1−c′1
1 , gr2−r

′
2 = h

c2−c′2
2 .

If c1 6= c′1, we obtain witness x1 = (r1 − r′1)/(c1 − c′1) satisfying h1 = gx1 ; otherwise c2 6= c′2,
and we obtain witness x2 = (r2 − r′2)/(c2 − c′2) satisfying h2 = gx2 . So, we either obtain a
correct witness x1 or a correct witness x2 (or both).

Finally, we show that special honest-verifier zero-knowledgeness holds. The honest-verifier
distribution and simulated distribution are, respectively (again considering the case of a prover
using x1):

{(a1, a2; c; c1, c2, r1, r2) : u1, r2, c2 ∈R Zn; a1 ← gu1 ; a2 ← gr2h−c22 ; c1 ←n c− c2;
r1 ←n u1 + c1x1},

{(a1, a2; c; c1, c2, r1, r2) : c1, r1, r2 ∈R Zn; c2 ←n c− c1; a1 ← gr1h−c11 ; a2 ← gr2h−c22 },

for any given challenge c. These distributions are identical (uniform distribution on all ac-
cepting conversations, each one occurring with a probability of 1/n3). �

EXERCISE 5.13 As a slight optimization of the protocol of Figure 5.8, note that the prover

may omit sending the value of c2, in which case the verifier must replace the test c1 + c2
?
=n c

by the assignment c2 ←n c−c1. (Thus, the prover omits sending c2 independent of whether it
knows x1 and/or x2.) Prove that the resulting protocol is a Σ-protocol for the same relation
as before.

50 CHAPTER 5 Zero-Knowledge Proofs

Prover Verifier
(x1 = logg1 h1, x2 = logg2 h2)

u1, u2, u3, u4 ∈R Zn
a1 ← gu11

a2 ← gu22

a3 ← (g1g2)u3(h1h2)u4 −−
a1, a2, a3
−−−−−−−−→

c ∈R Zn
←−−−−−

c
−−−−−

r1 ←n u1 + cx1

r2 ←n u2 + cx2

r3 ←n u3 + cx1/(x1 − x2)

r4 ←n u4 + c/(x2 − x1) −
r1, r2, r3, r4
−−−−−−−−−→ gr11

?
= a1h

c
1

gr22
?
= a2h

c
2

(g1g2)r3(h1h2)r4
?
= a3g

c
2

FIGURE 5.9: NEQ-composition of Schnorr’s protocol

5.2.5 NEQ-COMPOSITION

Finally, as the counterpart of EQ-composition, we consider NEQ-composition, which is a form
of AND-composition with the additional property that the two witnesses are different from
each other. We consider NEQ-composition for two instances of a given relation. That is, we
give a Σ-protocol for relation {(v1, v2;w1, w2) : (v1;w1) ∈ R, (v2;w2) ∈ R,w1 6= w2}, given a
Σ-protocol for relation R.

As a first step, note that it is easy to use AND-composition of the Σ-protocol for R to
prove knowledge of both witnesses. The protocol then needs to be extended to show that the
witnesses are indeed different.

We give an example based on Schnorr’s protocol. Again, we work with two generators
g1, g2, this time assuming that logg1 g2 is unknown. Given two public keys g1, h1 and g2, h2,
we know how to prove knowledge of x1 = logg1 h1 and x2 = logg2 h2. Moreover, since x1 6= x2

we have that x1 − x2 6= 0, hence we know that the multiplicative inverse of x1 − x2 modulo
n is defined. Starting from

h1h2 = gx11 gx22 = (g1g2)x1gx2−x12 ,

we therefore have
g2 = (g1g2)x1/(x1−x2)(h1h2)1/(x2−x1). (5.1)

Using Okamoto’s protocol we may thus prove that we can write g2 as a product of powers of
g1g2 and h1h2. This will suffice to get the desired protocol as the AND-composition of two
instances of Schnorr’s protocol and one instance of Okamoto’ protocol.

PROPOSITION 5.14 The protocol in Figure 5.9 is a Σ-protocol for relation

{(g1, h1, g2, h2;x1, x2) : h1 = gx11 , h2 = gx22 , x1 6= x2},

assuming that logg1 g2 is unknown.

§5.3 Miscellaneous Constructions 51

PROOF As for completeness, clearly grii = aih
c
i holds for i = 1, 2. Furthermore, we have:

(g1g2)r3(h1h2)r4 = (g1g2)u3(h1h2)u4((g1g2)cx1/(x1−x2)(h1h2)c/(x2−x1) = a3g
c
2,

using Eq. (5.1).

For special soundness, let (a1, a2, a3; c; r1, r2, r3, r4) and (a1, a2, a3; c′; r′1, r
′
2, r
′
3, r
′
4) be two

accepting conversations with c 6= c′. This implies that we can extract witness (x1, x2), with
x1 = (r′1− r1)/(c′− c) and x2 = (r′2− r2)/(c′− c) satisfying h1 = gx11 and h2 = gx22 . Moreover,
this implies that

g2 = (g1g2)(r3−r′3)/(c−c′)(h1h2)(r4−r′4)/(c−c′).

Now, suppose x1 = x2. Then, we can write g2 = (g1g2)α for a known value of α 6= 0, 1 (using

that g1, g2 6= 1), hence g2 = g
α/(1−α)
1 , contradicting that logg1 g2 is unknown. Therefore,

x1 6= x2 follows, and we have shown that (x1, x2) is a valid witness.

Finally, for special honest-verifier zero-knowledgeness, let c be a given challenge. The
distributions for the conversations with an honest-verifier and for the simulated conversations
are, respectively:

{(a1, a2, a3; c; r1, r2, r3, r4) : u1, u2, u3, u4 ∈R Zn; a1 ← gu11 ; a2 ← gu22 ;
a3 ← (g1g2)u3(h1h2)u4 ; r1 ←n u1 + cx1; r2 ←n u2 + cx2;

r3 ←n u3 + cx1/(x1 − x2); r4 ←n u4 + c/(x2 − x1)},

{(a1, a2, a3; c; r1, r2, r3, r4) : r1, r2, r3, r4 ∈R Zn; a1 ← gr11 h
−c
1 ; a2 ← gr22 h

−c
2 ;

a3 ← (g1g2)r3(h1h2)r4g−c2 }.

Using Eq. (5.1), these distributions can be seen to be identical provided logg1 h1 6= logg2 h2, cf.
Definition 5.1; furthermore, if logg1 h1 = logg2 h2, the simulated conversations are accepting,
as required. �

5.3 MISCELLANEOUS CONSTRUCTIONS

In this section we explore some more examples of Σ-protocols, using various applications of
AND-composition, EQ-composition, OR-composition, and NEQ-composition. We start out
with an elaborate example, followed by several exercises.

EXAMPLE 5.15 Let g, h denote generators of a group of large prime order n such that logg h
is unknown to anyone. Suppose we need to design a Σ-protocol for the following (arbitrary)
relation:

R = {(A,B;x, y, z) : A = gxhy ∧ B = gxyh(1−x)z ∧ x ∈ {0, 1}}.

To break down the problem, we distinguish the cases x = 0 and x = 1 for a given pair
(A,B;x, y, z) ∈ R. If x = 0, then we have for a such a pair that A = hy ∧ B = hz holds.
Similarly, if x = 1, then we have that A = ghy ∧ B = gy holds. Therefore, it suffices to
design protocols for the following two relations and combine these using OR-composition:

R0 = {(A,B; y, z) : A = hy ∧ B = hz},
R1 = {(A,B; y) : A = ghy ∧ B = gy}.

52 CHAPTER 5 Zero-Knowledge Proofs

Prover Verifier

(case x = 0) (case x = 1)

u0A, u0B ∈R Zn u1 ∈R Zn
a0A ← hu0A a1A ← hu1

a0B ← hu0B a1B ← gu1

c1, r1 ∈R Zn c0, r0A, r0B ∈R Zn
a1A ← hr1(A/g)−c1 a0A ← hr0AA−c0

a1B ← gr1B−c1 a0B ← hr0BB−c0

−
a0A, a0B, a1A, a1B
−−−−−−−−−−−−−−→

c ∈R Zn
←−−−−−−−

c
−−−−−−−

c0 ←n c− c1 c1 ←n c− c0

r0A ←n u0A + c0y r1 ←n u1 + c1y

r0B ←n u0B + c0z −
c0, c1, r0A, r0B, r1
−−−−−−−−−−−−−−→ c0 + c1

?
=n c

hr0A
?
= a0AA

c0

hr0B
?
= a0BB

c0

hr1
?
= a1A(A/g)c1

gr1
?
= a1BB

c1

FIGURE 5.10: Σ-protocol for {(A,B;x, y, z) : A = gxhy ∧B = gxyh(1−x)z ∧ x ∈ {0, 1}}

To obtain a Σ-protocol for relation R0, we apply AND-composition to the following relations:

R0A = {(A; y) : A = hy},
R0B = {(B; z) : B = hz}.

To obtain a Σ-protocol for relation R1, we apply EQ-composition to the following relations:

R1A = {(A; y) : A/g = hy},
R1B = {(B; y) : B = gy}.

Each of the relations R0A, R0B, R1A, and R1B can be handled by an instance of Schnorr’s pro-
tocol, or a slight variation thereof. Hence, Σ-protocols for these relations are easily obtained.
The complete protocol is given in Figure 5.10.

Protocols for relations such as in Example 5.15 should be correct by construction. Never-
theless, to exclude mistakes or errors in the construction, a direct proof showing that the
Σ-protocol is correct may be prudent and instructive. In particular, to check that the sound-
ness and zero-knowledge properties indeed hold.

EXERCISE 5.16 Prove that the protocol of Figure 5.10 is a Σ-protocol for relation R, as
defined in Example 5.15.

§5.3 Miscellaneous Constructions 53

EXERCISE 5.17 Let g, h denote generators of a group of large prime order n such that
logg h is unknown to anyone. Let B = gxhy denote the common input to prover and verifier,
where x, y ∈ Zn is private input to the prover. In each of the following cases, design a
Σ-protocol for proving knowledge of x, y ∈ Zn such that B = gxhy and ψ(x, y) holds, for
given predicate ψ(x, y). In each case, prove that your protocol is indeed a Σ-protocol for the
relation {(B;x, y) : B = gxhy, ψ(x, y)}.

(a) ψ(x, y) ≡ true;

(b) ψ(x, y) ≡ x = y;

(c) ψ(x, y) ≡ αx+ βy = γ for given α, β ∈ Z∗n, γ ∈ Zn;

(d) ψ(x, y) ≡ x ∈ {0, 1};

(e) ψ(x, y) ≡ x ∈ {0, 1, . . . , 2` − 1}, where ` is a fixed integer, 1 ≤ ` ≤ blog2 nc;

(f) ψ(x, y) ≡ x 6= 0;

(g) ψ(x, y) ≡ x 6= y;

(h) ψ(x, y) ≡ αx+ βy 6= γ for given α, β ∈ Z∗n, γ ∈ Zn;

(i) ψ(x, y) ≡ xy = 1;

(j) ψ(x, y) ≡ ∃χ∈Znx = χ2;

(k) ψ(x, y) ≡ x2 = y2.

Hints: for part (a) use Okamoto’s protocol (see Figure 4.5); for part (b) consider modifications
of EQ-composition of Schnorr’s protocol (see Figure 5.7), or eliminate variable y directly using
that x = y; for part (c) eliminate one of the variables x,y using the given equation for x and
y; for part (d) use a protocol similar to OR-composition; for part (e) consider the binary
representation of x and use k instances of the protocol of part (d); for part (f) use an instance
of Okamoto’s protocol by isolating g on one side of the equation B = gxhy, similar to Eq. (5.1)
in NEQ-composition; parts (g) and (h) are generalizations of part (f); for part (i) isolate g
on one side of the equation for By and use EQ-composition with equation for B; for part (j)
use AND-composition and EQ-composition; for part (k) eliminate one of the variables and
use OR-composition.

EXERCISE 5.18 See Figure 4.5. Is the protocol of Figure 5.11 a Σ-protocol for the relation
{(h;x1, x2) : h = gx11 gx22 }?

EXERCISE 5.19 Let g, h denote generators of a group of large prime order n such that logg h
is unknown to anyone. Design Σ-protocols (and prove correctness) for the following relations:

(a) {(A,B;x, y, z) : A = gxhy, B = g1/xhz, x 6= 0};

(b) {(A1, A2, B;x1, x2, y1, y2, z) : A1 = gx1hy1 , A2 = gx2hy2 , B = gx1x2hz}.

54 CHAPTER 5 Zero-Knowledge Proofs

Prover Verifier
(h = gx11 gx22)

u1, u2 ∈R Zn
a1 ← gu11

a2 ← gu22 −−−
a1, a2
−−−−−−−→

c ∈R Zn
←−−−−−

c
−−−−−

r1 ←n u1 + cx1

r2 ←n u2 + cx2 −−−
r1, r2
−−−−−−→

gr11 g
r2
2

?
= a1a2h

c

FIGURE 5.11: Alternative to Okamoto’s protocol?

EXERCISE 5.20 Let g, h denote generators of a group of large prime order n such that logg h
is unknown to anyone. Consider an instance of the 3SAT problem for Boolean variables
v1, . . . , v`, given by a Boolean formula Φ consisting of m clauses, which each consist of 3
literals:

Φ = (l1,1 ∨ l1,2 ∨ l1,3) ∧ · · · ∧ (lm,1 ∨ lm,2 ∨ lm,3).

Each literal is of the form li,j = vk or li,j = vk = 1−vk (negation of vk), 1 ≤ k ≤ `. Construct
a Σ-protocol for the following relation:

RΦ = {(B1, . . . , B`;x1, y1, . . . , x`, y`) : Φ(x1, . . . , x`),∀`k=1Bk = gxkhyk , xk ∈ {0, 1}}.

EXERCISE 5.21 See the previous exercise. A Σ-protocol for RΦ actually proves knowledge
of witnesses to open the given commitments B1, . . . , B`. Construct a more flexible way for
proving that Φ is satisfiable, by considering the following relation instead:

R′Φ = {(−;x1, . . . , x`) : Φ(x1, . . . , x`)}.

5.4 NON-INTERACTIVE Σ-PROOFS

Recall that there are basically two forms of authentication schemes: interactive authentica-
tion schemes (e.g., identification schemes) and non-interactive authentication schemes (e.g.,
digital signature schemes). Similarly, one may distinguish two forms of zero-knowledge proof
schemes: interactive proof schemes and non-interactive proof schemes. An interactive proof
scheme comprises a protocol by which a prover convinces a verifier that a certain statement
holds. A non-interactive proof scheme comprises an algorithm by which a prover generates
a proof for a certain statement and another algorithm by which a verifier may verify a given
proof.

It turns out that there is a simple but effective way to make any Σ-protocol non-interactive,
known as the Fiat-Shamir heuristic. To emphasize the difference between an interactive Σ-
protocol and its non-interactive counterpart, we will refer to the non-interactive version as a
Σ-proof.

A distinctive feature of a non-interactive Σ-proof is that any entity may play the role of
the verifier. As a consequence, a non-interactive Σ-proof can be verified independently by

§5.4 Non-interactive Σ-Proofs 55

many entities—just as a digital signature can be verified by anyone who is interested in its
validity.

5.4.1 DIGITAL SIGNATURES FROM Σ-PROTOCOLS

A digital signature scheme consists of three algorithms: a key generation algorithm, a signa-
ture generation algorithm, and a signature verification algorithm. By means of an example
we will show how to convert any Σ-protocol (used for identification) into a corresponding
digital signature scheme, when given a cryptographic hash function H : {0, 1}∗ → {0, 1}k, for
a suitable value of k (see below).

Consider Schnorr’s protocol (see Figure 4.3) for proving knowledge of x = logg h, for a
given public key h. The Schnorr signature scheme is obtained by applying the Fiat-Shamir
heuristic to Schnorr’s protocol. This means that—rather than picking challenge c uniformly
at random (and independent of announcement a)—challenge c is computed as a hash value
of announcement a and message M , that is, c ← H(a,M). In this way, no interaction with
the verifier is required anymore, as the prover may compute challenge c on its own. The
security of the resulting signature scheme follows if one views H as a random oracle. The
intuition is that if H is a random function, then the value of challenge c = H(a,M) will appear
completely random to the prover for each new message M to be signed, hence c follows the
same distribution as when the prover interacts with an honest verifier. Moreover, the prover
must first choose announcement a before challenge c can be computed.

We will assume that 2k ≤ n. As a consequence, bit strings in {0, 1}k can be identified
with integers in {0, 1, . . . , 2k − 1} ⊆ Zn. The Schnorr signature scheme is composed of the
following three algorithms, where all users may share the group 〈g〉 of prime order n and hash
function H : {0, 1}∗ → {0, 1}k.

Key generation. A key pair (h;x) is generated by choosing private key x ∈R Zn and then
setting public key h by h← gx.

Signature generation. On input of a message M and a private key x, choose u ∈R Zn, set
a← gu, c← H(a,M), and r ←n u+ cx. The signature on M is the pair (c, r).

Signature verification. On input of a message M , a pair (c, r), and a public key h, accept
(c, r) as a signature on M if and only if c = H(grh−c,M) holds.

Clearly, the Schnorr signature scheme is quite efficient. The computational cost of signature
generation is dominated by the time to perform a single exponentiation of the form gu; if
desired, this exponentiation can be done beforehand, that is, before the message M is known.
The computational cost of signature verification is dominated by the time to perform a “dou-
ble” exponentiation of the form grh−c; such an exponentiation can be computed considerably
faster than just computing gr and h−c and multiplying the result. Since a Schnorr signature
(c, r) consists of two numbers in Zn, the size of a signature is rather small (in practice, n may
be a 256-bit number, hence a signature is just 512 bits.)

The Fiat-Shamir heuristic for converting Σ-protocols into signature schemes can be proved
secure (against adaptive chosen-message attacks) in the random oracle model. The next exer-
cise, however, shows that for contrived cases the resulting signature scheme may be insecure.

EXERCISE 5.22 To see that the Fiat-Shamir heuristic does not necessarily lead to secure
signature schemes, consider the following variant of Schnorr’s protocol, see Figure 5.12. The

56 CHAPTER 5 Zero-Knowledge Proofs

Prover Verifier
(x = logg h)

u ∈R Z∗n
a← gu −−−−−

a
−−−−−→

c ∈R Zn
←−−−−−

c
−−−−−

r ←n (c− F (a))u+ x

−−−−−
r
−−−−−→

gr
?
= ac−F (a)h

FIGURE 5.12: Parametrized insecure variant of Schnorr’s protocol

function F : 〈g〉 → Zn can be replaced by your favorite hash function; for simplicity it is
assumed that the hash function maps into Zn. Note that the constant function F (w) = 0, for
w ∈ 〈g〉, yields the protocol of Exercise 5.4.

(i) Show that the protocol is complete, special sound, and honest-verifier zero-knowledge
(for any function F : 〈g〉 → Zn).

(ii) What happens if we generate the challenge as c ← F (a) to obtain a non-interactive
version of the protocol? That is, what happens if we instantiate the random oracle with
H = F .

5.4.2 PROOFS OF VALIDITY

Consider a Pedersen commitment of the form B = gxhy, where x ∈ Zn is the committed value
and y ∈R Zn (cf. Section 3.2.2). Now, suppose that it must be ensured that the committed
value x is actually a bit, that is, x ∈ {0, 1}. We may do so by requiring the committer
to execute a Σ-protocol proving that indeed x ∈ {0, 1}, for a given commitment B (see
Exercise 5.17(d)).

In many applications, however, it is undesirable that the committer would need to engage
in an interactive protocol with every potential verifier (of which there may be many). A
better approach is therefore to apply the Fiat-Shamir heuristic to the Σ-protocol for proving
the given statement. The resulting non-interactive Σ-proof may then be verified by anyone
who is interested in its validity.

DEFINITION 5.23 Let H be a cryptographic hash function. For any Σ-protocol as in Fig-
ure 5.1, a (non-interactive) Σ-proof for relation R is defined in terms of two algorithms.

Proof generation. Given (v;w) ∈ R, a Σ-proof is a pair (α(v;w;uP); ρ(v;w;H(a; v);uP)).

Proof verification. For v ∈ V , (a; r) is accepted as Σ-proof if and only if ϕ(v; a;H(a; v); r).

In general, a Σ-proof thus consists of an announcement a and a response r. Often, however,
it is possible to reduce the size of a Σ-proof by replacing (parts of) a by the challenge c. A
well-known example is the above Schnorr signature scheme, in which (c; r) is used as signature
instead of (a; r), exploiting the fact that a can be recovered from (c; r) as a = grh−c. Another

§5.4 Non-interactive Σ-Proofs 57

typical example is the following Σ-proof for relation {(B;x, y) : B = gxhy, x ∈ {0, 1}}, where
the reduction in size is quite substantial.

EXAMPLE 5.24 The Σ-protocol of Exercise 5.17(d) is converted into a Σ-proof as follows.
Let B = gxhy be given and let x ∈ {0, 1}, y ∈ Zn be the private input for the prover. Write
x = 1− x for x ∈ {0, 1}.

Proof generation. Choose ux, cx, rx ∈R Zn, and set ax ← hux and ax ← hrx(B/gx)−cx.
Set the challenge c as c ← H(a0, a1, B), and compute the responses cx ←n c − cx and
rx ←n ux + cxy. The Σ-proof is the tuple (c0, c1, r0, r1).

Proof verification. Given commitment B, a tuple (c0, c1, r0, r1) is accepted as a Σ-proof if
and only if c0 + c1 =n H(hr0B−c0 , hr1(B/g)−c1 , B).

It is important to note that for a Σ-proof, value v is included in the input to the hash
function, as well as announcement a. This way the “context” (statement to be proved) is fixed,
and forgery of proofs is prevented. Hence, in Example 5.24, it is important that commitment
B is included in the input to the hash function. Otherwise the Σ-proof can be forged, that is,
valid Σ-proofs can be generated without knowing any x ∈ {0, 1}, y ∈ Zn satisfying B = gxhy.

EXERCISE 5.25 Show how to forge a Σ-proof (c0, c1, r0, r1) for a commitment B if proof
verification is changed into c0 + c1 =n H(hr0B−c0 , hr1(B/g)−c1) by making a suitable choice
for B. Hint: B can be set after c = H(a0, a1) is computed.

5.4.3 GROUP SIGNATURES

As a simple application of the techniques we have seen so far, we consider the problem of
designing a group signature scheme. An (anonymous) group signature scheme allows users to
sign on behalf of a group, in such a way that a signature does not disclose which user actually
produced the signature. If desired, e.g., in case of disputes, a group manager is still able to
prove which group member produced any given group signature.

DEFINITION 5.26 A group signature scheme for a group formed by a group manager
P0 and group members P1, . . . ,P`, ` ≥ 1, consists of the following four components.

Key generation. A protocol between P0,P1, . . . ,P` for generating a public key h for the
group, a private key x0 for the group manager P0 and a private key xi for each group
member Pi, 1 ≤ i ≤ `.

Signature generation. An algorithm that on input of a message M , the public key h of
the group, and a private key xi of a group member Pi, outputs a group signature S.

Signature verification. An algorithm that on input of a message M , the public key h of
the group, and a signature S, determines whether S is a valid group signature on M
with respect to public key h.

Signature opening. An algorithm that on input of a message M , the public key h of the
group, a valid group signature S, and the private key x0 of the group manager, outputs
the identity of the group member who generated S.

58 CHAPTER 5 Zero-Knowledge Proofs

A group signature scheme must meet similar security requirements as a basic digital signa-
ture scheme. In addition, there are requirements related to the anonymity of a group member
and the role of the group manager. Given a signature, no-one except the group manager
should be able to tell which group member produced the signature.3 More generally, given
two signatures, no-one except the group manager should be able to tell whether these signa-
ture were produced by the same group member or not (this property is called unlinkability).
Of course, group members should not be able to produce signatures on behalf of other group
members. Similarly, a group manager should not be able to frame a group member Pi by
opening a signature produced by Pj as if it was produced by Pi (i 6= j).

We next describe a simple group signature scheme, where we assume that all parties have
access to a generator g of order n. As a warm-up exercise we first consider the problem of
proving knowledge of 1-out-of-` private keys. The base case ` = 1 is just a Schnorr proof. The
case ` = 2 can be solved by an OR-composition of two Schnorr proofs. The general case may
be solved by repeating OR-composition ` − 1 times starting from ` Schnorr proofs, noting
that OR-composition of a 1-out-of-`1 proof and a 1-out-of-`2 proof yields a 1-out-of-(`1 + `2)
proof.

EXERCISE 5.27 Construct a Σ-protocol for the following relation

R(1,`) = {(h1, . . . , h`;x) : ∃`i=1hi = gx}

by generalizing the technique of OR-composition, and show that it is indeed a Σ-protocol.

Ignoring the role of the group manager for a moment, we obtain a group signature by
applying the Fiat-Shamir heuristic to the Σ-protocol of Exercise 5.27. To do so, we would set
c ← H(a1, . . . , a`,M) for a given message M . The group signature for M is then defined as
S = (c1, . . . , c`, r1, . . . , r`).

The complete group signature scheme is now as follows, where group member Pi is required
to include an ElGamal encryption of gxi under the group manager’s public key in each group
signature produced by Pi.

Key generation. Each group member Pi picks its private key xi ∈R Zn. Similarly, the
group manager picks its private key x0 ∈R Zn. The public key of the group is then set
to h = (h0, h1, . . . , h`), where hi = gxi , 0 ≤ i ≤ `.

Signature generation. Group member Pi computes an ElGamal encryption of hi = gxi

under the group manager’s public key h0: (A,B) = (gu, hu0g
xi), where u ∈R Zn. Next,

Pi produces a Σ-proof showing that (A,B) indeed encrypts one of the values h1, . . . , h`,
and that it knows the corresponding private key. More precisely, a Σ-proof for the
following relation is given

R′(1,`) = {(A,B, h0, h1, . . . , h`;u, x) : A = gu, B = hu0g
x,∃`i=1hi = gx}.

The given message M is also included as an additional input to the hash function in
the Σ-proof (similar to the way a Schnorr signature is generated).

Signature verification. The Σ-proof contained in the group signature is verified (similar
to the way a Schnorr signature is verified).

3For simplicity, we assume that group members do not keep track of which signatures they produced and
so on.

§5.5 Bibliographic Notes 59

Signature opening. The group manager decrypts the ElGamal encryption contained in the
group signature, and proves that it performed decryption correctly. More precisely,
given ElGamal ciphertext (A,B), the group manager outputs d = Ax0 and a Σ-proof
that logg h0 is equal to logA d, using EQ-composition. From d anyone may compute
B/d which is equal to the public key of the group member who produced the signature.

EXERCISE 5.28 Give a Σ-protocol for relation R′(1,`) and prove its correctness, in each of

the following cases: (i) ` = 1, (ii) ` = 2, and (iii) arbitrary ` ≥ 1.

5.5 BIBLIOGRAPHIC NOTES

The notion of a Σ-protocol was identified and studied in [Cra97], as a further abstraction of
the (special) honest-verifier zero-knowledge, special-sound protocols considered in [CDS94].
Nowadays many variants of Σ-protocols exist in the cryptographic literature.4 The defining
properties of completeness, soundness, and zero-knowledgeness in this text (cf. Definition 5.1)
have been chosen as strong as reasonably possible. Special attention has been paid to ensure
that the notion of a Σ-protocol is preserved under the compositions treated in Section 5.2.

The transformation from plain honest-verifier zero-knowledgeness to special honest-verifier
zero-knowledgeness in Figure 5.2 is from [Dam10]. OR-composition is from [CDS94], whereas
Exercise 5.17d is from [CFSY96]. EQ-composition is based on the protocol for proving equality
of discrete logarithms from [CP93]. The Σ-protocol for linear relations (Exercise 5.17c) and
the “not” proof (Exercise 5.17f–h) are from [Bra97]. NEQ-composition is related to (but
different from) both the “not” proof and the disavowal protocol in undeniable signature
schemes (see, e.g., [BCDP91]). The Σ-protocol of Exercise 5.19b is from [CD98].

The Fiat-Shamir heuristic is from [FS87]. Group signatures are due to [CH91], and the
scheme considered in the text using ElGamal is from [Cam97]. However, the 1-out-of-` signa-
ture scheme based on the Σ-protocol of Exercise 5.27 already dates back to [CDS94, Section 5].

4Since 2001, the name SIGMA (“SIGn-and-MAc”) is also used by Hugo Krawczyk for a certain type of
authenticated key-exchange protocol. Incidentally, there is also the thriller “The Sigma Protocol” by Robert
Ludlum (October 2001).

CHAPTER 6

Threshold Cryptography

In many situations it is undesirable that access to valuable items is controlled by a single
party only. For example, opening a personal safe at a bank requires the use of two keys,
one kept by the owner of the safe and one kept by a bank employee. Similarly, in many
cryptographic schemes it is undesirable that ownership of a secret key is limited to a single
party only. Instead, the ownership (i.e., knowledge) of a secret key needs to be distributed
between a number of parties.

Threshold cryptography, or more generally group-oriented cryptography, comprises tech-
niques to distribute basic cryptographic schemes between a number of parties. For example,
in a threshold version of a digital signature scheme the private key is shared between ten
parties, such that each subset of seven parties (or more) is able to issue signatures, while
subsets of six parties (or less) cannot produce valid signatures.

6.1 SECRET SHARING

Secret sharing schemes form the basis for threshold cryptography. The idea is to split a secret
into several shares, such that the secret can be reconstructed whenever a sufficient number
of shares is available; if an insufficient number of shares is available, it should not be possible
to reconstruct the secret, nor any part of it.

In constructing secret sharing schemes one should be aware of certain pitfalls, as demon-
strated in the following example.

EXAMPLE 6.1 Consider the RSA cryptosystem with public exponent e = 3 and modulus m,
gcd(e, φ(m)) = 1. Two persons like to split the private key d = 1/e mod φ(m) into two halves
such that both halves are required to recover d. What about splitting d into its most-significant
half and its least-significant half?

Let m = pq, with distinct primes p, q > 3 of the same bit length. Then 3d = 1 + lφ(m)
for some integer l. Since 0 < d < φ(m) it follows that l = 1 or l = 2. Since p and q are not
divisible by 3, φ(m) 6≡ 2 (mod 3), it follows that l ≡ 2 (mod 3). Hence l = 2. Consequently,
d = (1 + 2φ(m))/3, which we may approximate by

d̂ =

⌊
1 + 2(m− 2

√
m+ 1)

3

⌋
.

The approximation error is equal to

d̂− d =

⌊
1 + 2(m− 2

√
m+ 1)

3

⌋
− 1 + 2φ(m)

3
=

⌊
2

3
(p+ q − 2

√
m)

⌋
.

60

§6.1 Secret Sharing 61

Since p+ q > 2
√
m (which follows from (

√
p−√q)2 > 0), we have

0 ≤ d̂− d <
√
m,

using that w.l.o.g.
√
m/2 < p <

√
m < q <

√
2m (as p and q are of equal bit length). But

this means that the most-significant half of d is equal to the most-significant half of d̂. (See
also this Mathematica example.)

Thus, the person receiving the least-significant half of d is able to construct all of d’s bits!

The example shows that breaking a bit string into two (or more) pieces is, in general, not
a secure way to share a secret. Another problem with this approach is that it does not cover
the case of a bit string of length one. How do we “split the bit”?

The critical step in “splitting the bit” is to use some additional randomness. To split a
secret bit s ∈ {0, 1} into two shares, we choose an additional bit u ∈R {0, 1} and set as shares
s1 = s ⊕ u and s2 = u. Then neither of the shares s1, s2 on its own reveals any information
on s, but together s1 and s2 completely determine s, as s1 ⊕ s2 = s⊕ u⊕ u = s.

EXERCISE 6.2 Suppose u is uniformly distributed. Show that s1 and s2 are also uniformly
distributed, irrespective of the distribution of s.

As an immediate generalization, we may split a bit s into ` shares s1, . . . , s`, by picking
` − 1 random bits u2, . . . , u` ∈R {0, 1} and setting as shares s1 = s ⊕ u2 ⊕ · · · ⊕ u`, and
s2 = u2, . . . , s` = u`. The secret may then be reconstructed from all shares s1, . . . , s` by
computing s = s1 ⊕ · · · ⊕ s`. Less than ` shares do not yield any information on the secret
s. In general, though, it is not required that the secret can be reconstructed only when all
shares are available.

DEFINITION 6.3 A secret sharing scheme for a dealer D and participants P1, . . . ,P`
comprises the following two protocols.

Distribution. A protocol in which dealer D shares a secret s such that each participant Pi
obtains a share si, 1 ≤ i ≤ `.

Reconstruction. A protocol in which secret s is recovered by pooling shares si, i ∈ Q, of
any qualified set of participants Q ⊆ {P1, . . . ,P`}.

The set Γ of all qualified (or, authorized) subsets of {P1, . . . ,P`} is called the access
structure. More formally, access structure Γ is an element of the powerset of {P1, . . . ,P`},
or in symbols, Γ ∈ 2{P1,...,P`}, where 2X = {A : A ⊆ X} for a set X. Usually, an access
structure Γ is monotone, which means that Γ is closed under taking supersets: if A ∈ Γ and
A ⊆ B, then also B ∈ Γ, for all A,B ⊆ {P1, . . . ,P`}.

The following security requirements are imposed on a secret sharing scheme:

(i) any qualified set of participants is able to determine the value of s by pooling their
shares, and

(ii) any non-qualified set of participants cannot determine any information on the value of
s when pooling their shares.

http://www.win.tue.nl/~berry/2WC13/d3.nb

62 CHAPTER 6 Threshold Cryptography

Secret sharing schemes satisfying these requirements are called perfect.1

For the purpose of threshold cryptography, we will be concerned with (t, `)-threshold
secret sharing schemes only, where the access structure is defined as Γ = {Q ⊆ {P1, . . . ,P`} :
|Q| ≥ t}, 1 ≤ t ≤ `. In a (t, `)-threshold scheme, any group of t participants is able to recover
the secret, but no group of t− 1 or less participants can do so.

6.1.1 SHAMIR THRESHOLD SCHEME

Shamir proposed a simple and elegant (t, `)-threshold secret sharing scheme, 1 ≤ t ≤ `. The
scheme can be applied whenever the secret belongs to a finite field Fq of order q, where q > `.
For simplicity, however, we will describe Shamir’s scheme for the case q = p only, where p is
prime, since this allows us to treat the elements of Fq = Zp as integers modulo p.

Shamir’s (t, `)-threshold scheme for sharing a secret s ∈ Zp is defined as follows.

Distribution. The dealer picks a random polynomial a(X) ∈R Zp[X] of degree less than t
satisfying a(0) = s. It sends share si = a(i) to participant Pi, for i = 1, . . . , `.

Reconstruction. Any set Q of t participants may recover secret s from their shares by
Lagrange interpolation:2

s =
∑
i∈Q

siλQ,i, with λQ,i =
∏

j∈Q\{i}

j

j − i
.

To see why reconstruction works, recall that the Lagrange interpolation formula for the unique
polynomial a(X) of degree less than t passing through the points (i, si), i ∈ Q, is given by

a(X) =
∑
i∈Q

si
∏

j∈Q\{i}

X − j
i− j

.

Since we are interested in the constant term s = a(0) only, we may substitute 0 for X.

Next, we need to argue that non-qualified sets of participants cannot find the secret
s. Suppose that participants Pi pool their shares si, i ∈ A, where |A| = t − 1. Fix any
(hypothetical) value s̃ ∈ Zp for the secret, as used by the dealer. Lagrange interpolation of
the points (0, s̃) and (i, si), i ∈ A, implies that there exists a unique polynomial ã(X) of
degree less than t passing through these points. In other words, given shares si, i ∈ A, any
value s̃ for the secret is equally probable, which means that from these shares no information
on the secret s can be gained. Therefore, the scheme is perfect.

Note that the security of Shamir’s scheme does not depend on the size of p. The only
condition on p is that p > ` holds.

6.2 VERIFIABLE SECRET SHARING

A basic secret sharing scheme is defined to resist passive attacks only, which means that its
security depends on the assumption that all parties involved run the protocols as prescribed

1If non-qualified sets of participants are able to determine some (partial) information on secret s then the
scheme is not perfect. Without going into detail, we mention that such schemes are also of use.

2Note that we frequently write i ∈ Q as a shorthand for Pi ∈ Q.

§6.2 Verifiable Secret Sharing 63

by the scheme. After (honestly) taking part in the distribution protocol, a non-qualified set
of participants is not able to deduce any information on the secret.

In many applications, however, a secret sharing scheme is also required to withstand
active attacks. This is accomplished by a verifiable secret sharing (VSS) scheme, which
is designed to resist (combinations of) the following two types of active attacks:

• a dealer sending incorrect shares to some or all of the participants during the distribution
protocol, and

• participants submitting incorrect shares during the reconstruction protocol.

Clearly, Shamir’s scheme is not a VSS scheme, since it does not exclude either of these active
attacks. During the distribution protocol, there is no guarantee that the shares si received
actually correspond to a single polynomial a(X) of degree less than t. Similarly, during the
reconstruction protocol, there is no guarantee that a share si provided by participant Pi is
actually equal to the share received by Pi during the distribution protocol: nothing prevents
Pi from using a random value s̃i ∈R Zp instead of the correct value si; the reconstructed value
s̃ will be useless, but if Pi is the only cheating participant during reconstruction, Pi will still
be able to find the value of s using the other t− 1 correct shares.

We will consider two basic VSS schemes.

6.2.1 FELDMAN VSS

The idea behind Feldman’s VSS scheme is to let the dealer send additional values to all
participants based on which each share can be checked for validity. The scheme assumes a
DL setting.

Let 〈g〉 be a group of order n, where n is a large prime. Feldman’s (t, `)-threshold VSS
scheme for sharing a secret s ∈ Zn is defined as an extension of Shamir’s scheme.

Distribution. The dealer chooses a random polynomial of the form

a(X) = s+ u1X + · · ·+ ut−1X
t−1,

where uj ∈R Zn, 1 ≤ j < t. The dealer sends shares si = a(i) to participant Pi in
private, for i = 1, . . . , `. Set u0 = s. In addition, the dealer broadcasts commitments
Bj = guj , 0 ≤ j < t. Upon receipt of share si, participant Pi verifies its validity by
evaluating the following equation:

gsi =

t−1∏
j=0

Bij

j . (6.1)

Reconstruction. Each share si contributed by participant Pi is verified using Eq. (6.1).
The secret s = a(0) is then recovered as in Shamir’s scheme from t valid shares.

The commitments Bj broadcast by the dealer, commit the dealer to a single polynomial a(X)
of degree less than t over Zn. If si = a(i), then Eq. (6.1) will indeed hold:

gsi = ga(i) = g
∑t−1
j=0 uji

j

=
t−1∏
j=0

guji
j

=
t−1∏
j=0

Bij

j .

64 CHAPTER 6 Threshold Cryptography

Therefore, any attempts at cheating by the dealer or by one or more participants is detected.
This security property does not depend on the DL assumption (or any other computational
assumption).

To complete the security analysis of Feldman’s scheme, however, we need to argue that
any set of t − 1 participants is not able to find the secret from their shares, given the fact
that they also get to see the commitments Bj , j = 0, . . . , t − 1. In particular, note that
B0 = gu0 = gs is available, hence it is possible to find s if one is able to compute discrete logs
w.r.t. g. Thus, we will prove that if the DL assumption holds for 〈g〉, it follows that t− 1 or
less participants are not able to find the secret s.

Let h ∈ 〈g〉 be given, such that logg h is unknown. Suppose w.l.o.g. that participants
P1, . . . ,Pt−1 (hence, collectively forming the adversary) are able to find the secret s. We
show how to compute logg h, which contradicts the DL assumption.

Given h we construct a modified instance of Feldman’s VSS as follows. The distribution
protocol is modified by letting the dealer set B0 = h (which means that the secret is s = logg h
is not known to the dealer). The dealer also chooses s1, . . . , st−1 ∈R Zn, and computes Bj
for j = 1, . . . , t − 1 such that Eq. (6.1) holds for participants P1, . . . ,Pt−1. (The shares for
participants Pt, . . . ,P` are irrelevant.)

It is essential that the dealer is able to compute Bj for j = 1, . . . , t− 1 without knowing
s = logg h by setting:

Bj =

t−1∏
k=1

(gsk/h)γj,k . (6.2)

Here (t− 1)× (t− 1) matrix (γj,k) is the inverse of the following Vandermonde matrix:
1 1 · · · 1
2 22 · · · 2t−1

...
...

...
t− 1 (t− 1)2 · · · (t− 1)t−1

 .

EXERCISE 6.4 Verify that Eq. (6.1) holds for 1 ≤ i < t if B0 = h and Bj , 1 ≤ j < t, are
defined by (6.2).

The view of participants P1, . . . ,Pt−1 in the above modified instance of Feldman’s scheme
is identical to their view in a regular instance of the scheme. Therefore, any successful attack
on the regular instances will be equally successful on the modified instances. However, in the
modified instances the dealer itself does not even know the secret s, and breaking a modified
instance actually means computing the “embedded” discrete logarithm logg h. Any successful
attack on Feldman’s scheme, recovering the secret from t−1 shares only, would thus contradict
the DL assumption.

EXERCISE 6.5 The special case of an (`, `)-threshold scheme for secrets s ∈ Zn can be
solved simply by setting the shares as follows: choose si ∈R Zn for i = 2, . . . , ` and set
s1 = (s−

∑`
i=2 si) mod n. Extend this basic secret sharing scheme to a Feldman VSS scheme,

and provide a security analysis of the resulting VSS scheme.

§6.2 Verifiable Secret Sharing 65

6.2.2 PEDERSEN VSS

There is one caveat for Feldman’s scheme which we have ignored so far. We have tacitly
assumed that the a priori distribution of the secret s used by the dealer is the uniform
distribution on Zn. In some applications, however, the a priori distribution of s may be very
skewed. For example, it may already be known that the secret is actually a bit, hence that
Pr[s = v] = 0 for all v ∈ Zn \ {0, 1}.

Pedersen’s VSS scheme allows one to share a secret s in a verifiable way such that the
security does not depend on the a priori distribution of s. In fact, the secret s will remain
hidden without relying on a discrete log assumption. Hence, the secrecy of s is guaranteed
in an information-theoretic way, just as for the basic Shamir scheme. The critical difference
compared to Feldman’s scheme is to use Pedersen commitments (see Section 3.2.2) for the
commitments broadcast by the dealer.

The DL assumption is still relevant, however, since we need it to show that the dealer
cannot cheat by sending inconsistent shares to the participants.

Let 〈g〉 be a group of order n, where n is a large prime. Let h ∈R G\{1} denote a random
group element (such that logg h is not known to any party). Pedersen’s (t, `)-threshold VSS
scheme for sharing a secret s ∈ Zn is defined as the following modification of Feldman’s
scheme.

Distribution. The dealer chooses random polynomials a(X), b(X) of the form

a(X) = u0 + u1X + · · ·+ ut−1X
t−1

b(X) = v0 + v1X + · · ·+ vt−1X
t−1,

where uj , vj ∈R Zn, 0 ≤ j < t, subject to the condition a(0) = s. The dealer sends shares
si = (a(i), b(i)) to participant Pi in private, for i = 1, . . . , `. In addition, the dealer
broadcasts commitments Cj = gujhvj , 0 ≤ j < t. Upon receipt of share si = (si1, si2),
participant Pi verifies its by evaluating the following equation:

gsi1hsi2 =
t−1∏
j=0

Ci
j

j . (6.3)

Reconstruction. Each share si contributed by participant Pi is verified using Eq. (6.3).
The secret s = a(0) is then recovered as in Shamir’s scheme from t valid shares.

Informally, the security of Pedersen’s VSS scheme is analyzed as follows. Using that
u0 = s, note that the dealer broadcasts commitment C0 = gshv0 . Since this is a Pedersen
commitment, it follows that the secret s is hidden in an information-theoretic way. This line
of reasoning can be extended to show that even when t − 1 shares are known in addition to
the commitments Cj , 0 ≤ j < t, nothing can be deduced about the value of s (other than
what already follows from the a priori distribution of s).

A technical detail is that the dealer would be able to cheat if it would know logg h. The fact
that Pedersen’s commitment scheme is computationally binding (under the DL assumption),
however, ensures that the dealer is committed to the polynomials a(X) and b(X) once it
broadcasts the Cj values.

EXERCISE 6.6 See Exercise 6.5. This time extend the basic (`, `)-threshold scheme with
shares si ∈R Zn for i = 2, . . . , ` and s1 = (s−

∑`
i=2 si) mod n to a Pedersen VSS scheme, and

provide a security analysis of the resulting VSS scheme.

66 CHAPTER 6 Threshold Cryptography

6.3 THRESHOLD CRYPTOSYSTEMS

In a basic public-key cryptosystem the private key is held by a single party. The object
of a (t, `)-threshold cryptosystem is to distribute the knowledge of a private key between
parties P1, . . . ,P` such that at least t of these parties are required for successful decryption,
1 ≤ t ≤ `. As a concrete example we will consider a (t, `)-threshold version of the ElGamal
cryptosystem.

Recall from Section 2.1.4 that the basic ElGamal cryptosystem consists of a key generation
algorithm, an encryption algorithm, and a decryption algorithm. To appreciate the definition
of a threshold cryptosystem (Definition 6.7), we first consider a simple but flawed approach
for obtaining a threshold version of the ElGamal cryptosystem.

The idea is to incorporate a (verifiable) secret sharing scheme as follows. A dealer first
runs the key generation algorithm of the ElGamal cryptosystem, resulting in a private key x
and a public key h, say. Subsequently, the dealer runs the distribution protocol of a (t, `)-
threshold secret sharing scheme, using x as the secret (e.g., using Feldman’s VSS scheme).
As a result, party Pi gets a share xi of the private key. The encryption algorithm remains the
same, using public key h. Finally, for decryption, the reconstruction protocol of the secret
sharing scheme is run first to obtain the private key x, which is then used as input to the
decryption algorithm.

However, this simple method suffers from two major drawbacks. Firstly, the dealer gets to
know the private key x, hence the dealer must be trusted not to use x on its own. Secondly,
during decryption the private key x is reconstructed, hence the parties involved must be
trusted not to use x on their own as well.

To address these problems, a threshold cryptosystem is defined as follows.

DEFINITION 6.7 A (t, `)-threshold cryptosystem, 1 ≤ t ≤ `, is a scheme for parties
P1, . . . ,P` consisting of the following three components.

Distributed key generation. A protocol between P1, . . . ,P` for generating a public key h
such that party Pi obtains a private share xi (of the private key x corresponding to h)
and a public verification key hi, 1 ≤ i ≤ `. The protocol depends on t.

Encryption. An algorithm that on input of a plaintext M , a public key h, outputs a ci-
phertext C of M under public key h.

Threshold decryption. A protocol between any set of t parties Pi1 , . . . ,Pit that on input
of a ciphertext C, private shares xi1 , . . . , xit, and verification keys hi1 , . . . , hit, outputs
plaintext M .

A basic security requirement for a threshold cryptosystem is that the private key x remains
secret at all times, unless t or more parties decide to cheat by pooling their shares. Therefore,
the distributed key generation (DKG) protocol is symmetric with respect to the roles of
P1, . . . ,P`, hence the DKG protocol does not rely on a special party acting as a (trusted)
dealer in a secret sharing scheme. Similarly, the threshold decryption protocol should be such
that it does not rely on reconstructing the private key x.

EXERCISE 6.8 See Section 2.1.4. Design an (`, `)-threshold ElGamal cryptosystem (for
plaintexts in 〈g〉) with public key h =

∏`
i=1 hi, where xi ∈ Zn is the private share of party Pi

and hi = gxi is the corresponding verification key, 1 ≤ i ≤ `, and discuss its security.

§6.3 Threshold Cryptosystems 67

6.3.1 THRESHOLD ELGAMAL CRYPTOSYSTEM

As usual let 〈g〉 be a group of order n, where n is a large prime. In the basic ElGamal
cryptosystem, a public key is of the form h = gx, where x ∈R Zn denotes the private key. For
a (t, `)-threshold ElGamal cryptosystem, a public key will be of the form h = ga(0), where
a(X) ∈ Zn[X] is a random polynomial of degree less than t. Each party Pi gets a private
share xi = a(i), 1 ≤ i ≤ `, hence a(X) is the unique polynomial passing through the points
(1, x1), . . . , (`, x`). Furthermore, the corresponding verification keys are defined as hi = gxi .

Distributed Key Generation Protocol

The object of the DKG protocol is to let parties P1, . . . ,P` jointly generate the random
polynomial a(X). We will do so by having each party Pi, 1 ≤ i ≤ `, pick a random polynomial
ai(X) ∈ Zn[X] of degree less than t and then defining a(X) =

∑`
i=1 ai(X). Feldman’s VSS is

used to share these polynomials between the parties. For simplicity we assume that each party
behaves honestly (the protocol is able to identify cheating parties, but it is a bit cumbersome
to describe how the cheating parties are to be eliminated).

The DKG protocol then consists of the following steps, using an auxiliary commitment
scheme:

1. Each party Pi picks a random polynomial ai(X) ∈ Zn[X] of degree less than t, and
broadcasts a commitment to the value of gsi , where si = ai(0).

2. Each party Pi opens its commitment to gsi and the public key h is set as h = g
∑`
i=1 si .

3. Each party Pi runs an instance of Feldman’s VSS scheme, using si ∈ Zn as secret
value. Party Pi plays the role of the dealer, and parties P1, . . . ,P` play the role of the
participants. (Hence, Pi plays a double role, namely as the dealer and as a participant.)

4. Let sij denote the share of si as sent by party Pi to party Pj , for 1 ≤ i, j ≤ `. Each

party Pi sums all its received shares sji to obtain its share xi =
∑`

j=1 sji of the private
key x. The verification key of party Pi is defined as hi = gxi .

Note that sji = aj(i). Since a(X) =
∑`

i=1 ai(X), it follows that xi = a(i).
The use of the auxiliary commitment scheme in the first two steps of the protocol ensures

that no party is able to influence the value of the public key h, other than by contributing a
random share si.

Threshold Decryption Protocol

Let C = (A,B) be an ElGamal ciphertext for public key h. The threshold decryption protocol
consists of the following two steps:

1. Each party Pi takes A as input and uses its share xi to produce a value di = Axi along
with a Σ-proof showing that logg hi = logA di.

2. Let Q be a set of t parties who produced correct di values. Then the plaintext M can
be recovered by evaluating:

B/
∏
i∈Q

d
λQ,i
i = B/Ax = M,

68 CHAPTER 6 Threshold Cryptography

where λQ,i =
∏
j∈Q\{i}

j
j−i denote Lagrange coefficients as in Shamir’s scheme.

As long as t or more parties produce a correct decryption share di, decryption succeeds.
Hence, the protocol tolerates at most ` − t faulty parties, who are unable or unwilling to
participate in the decryption of a given ciphertext.

6.4 BIBLIOGRAPHIC NOTES

The observation that for small e the RSA cryptosystem leaks the most-significant half of the
private key d can be traced back to [BDF98, p. 29]. Example 6.1 builds on this idea, using a
slightly better approximation d̂ and optimizing for the case e = 3.

The Shamir threshold secret sharing scheme is from [Sha79]. Independently, Blakley dis-
covered another way to do threshold secret sharing [Bla79]. Threshold cryptography was in-
troduced as a new concept together with some first solutions in [Des88, DF90], see also [Des94].
The Feldman VSS and Pedersen VSS schemes are from [Fel87] and [Ped92], respectively. The
threshold ElGamal cryptosystem is from [Ped91].

CHAPTER 7

Secure Multiparty Computation

Imagine a constellation of parties P1, . . . ,P` each holding a value x1, . . . , x`, respectively,
for which they like to evaluate the function value f(x1, . . . , x`) for some given function f .
The problem of secure multiparty computation is to find a protocol for P1, . . . ,P` which
enables them to jointly compute output value f(x1, . . . , x`), however in such a way that
their respective input values x1, . . . , x` remain secret, except for the information that can be
inferred logically from the output value.

In case ` = 2, a classical example is Yao’s millionaires problem. Parties P1 and P2 are two
millionaires (or, rather billionaires by today’s standards) who want to compare their wealth,
hence to see who is the richer one. That is, writing x1, x2 for their respective wealths, they
want to evaluate the function f(x1, x2) = x1 > x2 (we do not care about the improbable case
that x1 = x2). They could simply do so by telling each other the values of x1 and x2 but
obviously this way much more information than the value of x1 > x2 is revealed. What they
need is a protocol for evaluating the value of x1 > x2 without leaking any further information
on x1 and x2.

The beauty of the theory of secure multiparty computation is that a protocol for evaluating
a given function f securely can be found, as long as f is an efficiently computable function.
In this chapter we first cover electronic voting as a simple case of multiparty computation,
corresponding to function f(x1, . . . , x`) = x1 + · · · + x`. Subsequently, we will consider the
problem for general functions f , such as f(x1, . . . , x`) = x1 · · · · · x` and f(x1, . . . , x`) =
max(x1, . . . , x`), which are harder to handle.

7.1 ELECTRONIC VOTING

The problem of finding a secure and efficient electronic voting scheme has been a challenge
since the beginning of the 1980s. Assuming that votes are binary (that is, either “yes” or
“no”), electronic voting can be viewed as an instance of a secure multiparty computation,
where the function to be evaluated is f(x1, . . . , x`) = x1 + · · ·+x` for votes x1, . . . , x` ∈ {0, 1}.
Given the techniques developed in the preceding chapters it is possible to arrive at a practical
solution in just a few steps.

Let us briefly state the basic security requirements for an electronic voting scheme.

• Eligibility means that only eligible voters can cast a vote, and also that each eligible
voter can cast at most one vote.

69

70 CHAPTER 7 Secure Multiparty Computation

• Privacy of an individual vote is assured against any reasonably sized coalition of parties
(not including the voter herself). Depending on the implementation some cryptographic
assumptions need to be assumed as well.

• Universal Verifiability ensures that any party, including a passive observer, can check
that the election is fair, i.e., that the published final tally is computed fairly from the
ballots that were correctly cast.

• Robustness (or fault-tolerance) means that the faulty behavior (either benign or ma-
licious) of any reasonably sized coalition of participants can be tolerated. In large-scale
elections this means that no coalition of voters of any size can disrupt the election; in
other words, any cheating voter can be detected and discarded.

We will formulate a solution in terms of two types of roles: voters and talliers. Let
V1, . . . ,V`′ denote the voters and T1, . . . , T` denote the talliers taking part in the election.
The role of a voter is simply to cast a vote as an encrypted and authenticated message. The
talliers will take care of computing the final tally (i.e., the sum of the votes), however, without
compromising the privacy of the votes. The problem is to resolve the apparent contradiction
that in order to compute the sum of the votes, the talliers need to decrypt the individual
votes thereby compromising privacy.

A single party (person or entity) may take part as a voter, as a tallier, or as both a voter
and a tallier. Two typical cases are large-scale elections with `′ � ` and boardroom elections
with `′ = `. In large-scale elections the number of voters may range from 100 to 1,000,000
say, while the number of talliers is limited, e.g., between 5 and 50. In a boardroom election
every person plays the role of both voter and tallier. The voting scheme below is suited for
large-scale elections, limiting the work for voters to sending a single message.

For the solution presented below, the main tool is a threshold homomorphic cryp-
tosystem. As a concrete example of such a cryptosystem, we will consider the threshold
homomorphic ElGamal cryptosystem. This version of the ElGamal cryptosystem is the same
as the threshold ElGamal cryptosystem of Section 6.3.1 with the modification that the plain-
text space is Zn instead of 〈g〉, where encryption of a plaintext M ∈ Zn under public key h
is defined as

(A,B) = (gu, hugM), u ∈R Zn.

In other words, a value M ∈ Zn is encoded as a value gM ∈ 〈g〉. Note that during decryption
we need to apply the reverse transformation, that is given gM for some M ∈ Zn, we need
to compute M . In general, we would need to solve the discrete log problem to do so, which
we assume to be infeasible. The way out is that we will see to it that M belongs to a small
subset of Zn.

This modified ElGamal cryptosystem then enjoys the following (additive) homomorphic
property. If we multiply an encryption (A,B) of M with an encryption (A′, B′) of M ′ we
obtain an encryption of M +M ′:

(A,B) ∗ (A′, B′) = (AA′, BB′) = (gu+u′ , hu+u′gM+M ′).

The electronic voting scheme is now as follows.

Key generation. The talliers T1, . . . , T` run the DKG protocol of the (t, `)-threshold ElGa-
mal cryptosystem, for an agreed upon value of t. Let h denote the resulting public
key.

§7.1 Electronic Voting 71

Voting. Each voter Vi casts a vote vi ∈ {0, 1} ' {“no”, “yes”} by broadcasting a ballot1

which is a message consisting of an ElGamal encryption (Ai, Bi) = (gui , huigvi), where
ui ∈R Zn, and a Σ-proof that (Ai, Bi) is correctly formed.

Tallying. The talliers decrypt the product (A,B) =
∏`′

i=1(Ai, Bi) to obtain g
∑`′
i=1 vi as inter-

mediate result, from which
∑`′

i=1 vi is easily determined using that 0 ≤
∑`′

i=1 vi ≤ `′.2

If all (Ai, Bi) are correctly formed, it follows from the homomorphic property that (A,B) =

(gu, hug
∑`′
i=1 vi) for some u ∈ Zn, which ensures the validity of the final tally.

EXERCISE 7.1 Provide the Σ-protocol for proving that (Ai, Bi) is correctly formed, and turn
it into a Σ-proof (see Section 5.4.2 for a similar case).

In practice, voter Vi needs to authenticate its ballot, say by producing a digital signature
on (Ai, Bi) and the accompanying proof. The officials running the voting scheme must know
the public keys of the voters. During an election, the officials will check the signature on each
submitted ballot. At most one ballot will be accepted and recorded for each voter.

The property of universal verifiability is that anyone is able to check that (i) all ballots
(Ai, Bi) used to calculate the product (A,B) are correctly formed (by checking the accom-
panying proofs), (ii) each ballot (Ai, Bi) is correctly signed w.r.t. the public key of voter Vi,
(iii) product (A,B) is computed correctly, (iv) each tallier produced a correct share of the
decryption of (A,B) (by checking the proofs, see Section 6.3.1), and finally (v) that the final
tally corresponds to the decrypted value of (A,B).

EXERCISE 7.2 The topic of this exercise is a boardroom election scheme involving voters
(doubling as talliers) V1, . . . ,V`, ` ≥ 1. Each voter Vi has a public key hi = gxi , where
xi ∈R Zn is Vi’s private key. Let Hi = h`

∏i−1
j=1 hj , for 1 ≤ i ≤ `.

First, voter V` publishes the following encryption of its vote v` ∈ {0, 1}:

(A`, B`) = (gu` , Hu`
` g

v`),

where u` ∈R Zn. Next, for i = ` − 1, . . . , 1 (in this order), voter Vi publishes the following
encryption of its vote vi ∈ {0, 1}:

(Ai, Bi) = (Ai+1g
ui , Bi+1A

−xi
i+1H

ui
i g

vi),

where ui ∈R Zn. Finally, voter V` publishes logg B1A
−x`
1 .

Let ti =
∑`

j=i vj , for 1 ≤ i ≤ `. (i) Prove by induction on i that (Ai, Bi) is an ElGamal

encryption of gti under public key Hi. Hence, that V` publishes
∑`

j=1 vj at the end of the
protocol. (ii) Show how V`,V1, . . . ,Vi−1 for any i, 2 ≤ i ≤ `, are jointly able to decrypt
(Ai, Bi), hence that they are able to determine the intermediate election result ti. (iii) De-
scribe the relations that need to be proved in each protocol step to show that the voter’s
output is formed correctly.

1The word “ballot” derives from the Italian “ballotta.” Small colored balls (like peas or beans) were first
used for secret voting in Italy in mid 16th century. Here, we use “ballot” as a shorthand for “voted ballot,”
which literally means “a sheet of paper filled out to cast a secret vote.”

2Given h = gx, where 0 ≤ x ≤ `′ < n, the Pollard-λ (kangaroo) method finds x in O(
√
`′) time using O(1)

storage.

72 CHAPTER 7 Secure Multiparty Computation

x y xy

0 0 0
1 0 0
0 1 0
1 1 1

∼=
Alice Bob match?

no no -
yes no -
no yes -
yes yes ♥

FIGURE 7.1: Matching without embarrassments

7.2 BASED ON THRESHOLD HOMOMORPHIC CRYPTOSYSTEMS

The homomorphic ElGamal cryptosystem introduced in the previous section provides an easy
way to compute an encryption of x + y (modulo n), given encryptions of x and y. We will
express this fact in a somewhat abstract way by saying that given homomorphic encryptions
E(x) and E(y), we may compute the encryption E(x + y) = E(x)E(y). Here, E(x) stands
for a homomorphic ElGamal encryption of x ∈ Zn under some understood, fixed public key
h; hence, E(x) = (gu, hugx) for some u ∈R Zn.

So, addition is easily covered. What about multiplication, that is, computing E(xy) from
E(x) and E(y)? This is indeed an important question as a solution to this problem basically
implies that we would be able to compute any function f : Zn × Zn → Zn. To compute
E(f(x, y)) from E(x) and E(y) we express f(x, y) as a polynomial in Zn[x, y], and repeatedly
apply addition and multiplication to evaluate the polynomial. For example, to compute
E((x+y)2) we first use addition to compute E(x+y) and then use multiplication to compute
E((x + y)(x + y)). Without going into details, we state that a solution for multiplication
allows us, in principle, to handle any efficiently computable function.

We will now focus on the computation of E(xy) given E(x) and E(y), considering the
special case that x, y ∈ {0, 1}. Also, we restrict ourselves to the case of two-party computation
(` = 2), writing A and B for parties P1 and P2. Despite these restrictions the problem of
computing E(xy) is still non-trivial.

We first consider the case where partyA knows x and party B knows y. In other words, x is
the private input of A and y is the private input of B. Securely computing xy in this case may
be interpreted as a way to implement the ultimate dating service, as may be concluded from
Figure 7.1. The idea is as follows. Say, Alice and Bob like to find out if they want to go on a
date (with each other). They might simply tell each other whether they are interested or not.
In case they are both interested, this simple solution is satisfactory. However, if for example
Alice is not interested in Bob but Bob is interested in Alice, Bob might feel embarrassed
afterwards because he expressed interest in her; if he would have known beforehand that
Alice was not interested anyway, he would have told Alice that he was not interested.

In terms of bits, we see that if xy = 1 it follows that x = y = 1 and there is nothing to
hide. If xy = 0, then x = 0 and/or y = 0. If x = 0, then it follows that xy = 0 regardless
of the value of y; in this case, a secure computation of xy is required to completely hide the
value of y. Hence, if Alice is not interested in Bob, and she knows that there is not going to
be a match anyway, she should not be able to find out whether Bob was interested or not.
The same reasoning applies to the case y = 0.

Let x ∈ {0, 1} be the private input of party A, and let y ∈ {0, 1} be the private input of
party B. To compute xy securely, the following protocol is executed, assuming that A and B
have set up a (2, 2)-threshold ElGamal cryptosystem with public key h.

§7.3 Based on Oblivious Transfer 73

1. Party A sends encryption (A,B) = (gu, hugx), where u ∈R Zn to party B.

2. Party B raises the encryption to the power y and sends the randomized result (C,D) =
(gvAy, hvBy), where v ∈R Zn, to party A.

3. Parties A and B jointly decrypt (C,D) to obtain the value of xy.

The protocol is described for the passive case, that is, the case in which the parties follow
the protocol exactly. If A and B follow the protocol, we see that (C,D) = (gv+uy, hv+uygxy),
hence decryption of (C,D) indeed results in the value of xy.

To prove the security of the protocol in the passive case, we still need to do some work
though. Namely, we must show that party A is not able to deduce any information on y other
than implied by the values of its own input x and the common output xy. The only additional
information A gets on y is the encryption (C,D), but note that (C,D) = (gvAy, hvBy), where
v ∈R Zn is only known to party B. Under the DDH assumption, it follows that (C,D) does
not give any information on y. Similarly, the only additional information B gets on x is the
encryption (A,B) which gives no information on x, again under the DDH assumption.

To cover the active case, zero-knowledge proofs should be added to enforce parties A and
B to follow the protocol. In this case, A is required to prove that (A,B) is an encryption of a
bit value, and B is required to prove that (C,D) is indeed of the form (gsAy, hsBy) for some
s ∈ Zn and some y ∈ {0, 1}.

Next, we consider the more general case where values x and y are not known to parties
A and B, respectively, but x and y are only given by encryptions E(x) and E(y) say. (This
case arises for example when x and y result from earlier intermediate computations.) In
order to compute an encryption E(xy) we will decrypt some information related to x but
without revealing any information on x. For convenience, we will assume that the bits x, y
are represented as X = (−1)x and Y = (−1)y respectively, mapping {0, 1} to {1,−1}.3 The
protocol for the passive case is as follows, using E(·) notation to hide some of the details:

1. Party A chooses u ∈R {1,−1} and sends encryptions E(Xu) = E(X)u and E(Y u) =
E(Y)u to party B.

2. Party B chooses v ∈R {1,−1} and sends encryptions E(Xuv) = E(Xu)v and E(Y uv) =
E(Y u)v to party A.

3. Parties A and B jointly decrypt E(Xuv) to obtain the value of z = Xuv. The output
of the protocol is set to E(Y uvz) = E(Y uv)z.

It follows that the output of the protocol is indeed E(Y uvz) = E(Y uvXuv) = E(XY).
Moreover, the value z = Xuv as decrypted during the protocol is statistically independent of
the value of X, both from A’s point of view and from B’s point of view: A does not know v,
which is chosen at random in {1,−1} by B, and similarly B does not know u.

7.3 BASED ON OBLIVIOUS TRANSFER

As an alternative approach to secure computation we will now consider a solution based on
oblivious transfer (OT). The most basic form of oblivious transfer is a protocol between a

3Since (−1)x = 1 − 2x for x ∈ {0, 1} we have that E(X) = E(1)/E(x)2. The reverse transformation is
given by E(x) = (E(1)/E(X))1/2. These transformations can be computed using the homomorphic property
of E(·).

74 CHAPTER 7 Secure Multiparty Computation

Sender Receiver
(x0, x1 ∈ {0, 1}) (s ∈ {0, 1})

u ∈R Zn
hs ← gu

h1−s ← h/gu

←−−−−−
h0, h1
−−−−−−−−−

u0, u1 ∈R Zn
(A0, B0)← (gu0 , hu00 gx0)
(A1, B1)← (gu1 , hu11 gx1)

−
(A0, B0), (A1, B1)
−−−−−−−−−−−−−−→

xs ← logg(Bs/A
u
s)

FIGURE 7.2:
(

2
1

)
-OT protocol

sender and receiver, achieving the following functionality. The sender uses one bit b as its
private input to the protocol; the receiver does not provide any private input to the protocol.
At the completion of the protocol, the receiver either gets the bit b or an undefined value
⊥. Both cases occur with probability 50%, and the receiver knows whether it gets b or ⊥.
However, the sender does not know whether bit b was transferred successfully or not.

Despite the somewhat strange functionality of an oblivious transfer protocol, it turns
out that OT is sufficiently powerful to construct a secure multiparty computation for any
efficiently computable function. To argue why this is true, it is more convenient to use

(
2
1

)
-

OT instead of the above “raw” version of OT. In a
(

2
1

)
-OT, the sender uses two private input

bits x0, x1 and the receiver uses one private input bit s. At the completion of the protocol,
the receiver now gets the bit xs, whereas the sender does not get any information on the value
of s, i.e., the sender does not know which bit was selected by the receiver. This functionality
is denoted by OT (x0, x1; s) = xs.

These two types of oblivious transfer are equivalent in the sense that either type can be
constructed from the other one, using a polynomial time transformation. For the remainder
of this section, we will only use

(
2
1

)
-OT.

In Figure 7.2 an example of a
(

2
1

)
-OT protocol for a discrete log setting is given. The

common input to the protocol consists of a group 〈g〉 and a group element h ∈ 〈g〉, for which
logg h is not known to any party. The receiver is supposed to pick elements h0, h1 such that
h0h1 = h, which implies that the receiver cannot know both logg h0 and logg h1. Given h0

and h1, the sender returns homomorphic ElGamal encryptions of bits x0 and x1, respectively,
using h0 and h1 as public keys. The receiver is then able to decrypt one of these encryptions,
to recover either x0 or x1.

So, if both parties follow the protocol, the receiver learns exactly one of the bits x0 and x1

(and obtains no information about the other bit), and the sender does not have a clue which
bit the receiver gets. Hence, the

(
2
1

)
-OT protocol of Figure 7.2 achieves its goal in the passive

case.

Next, we show how parties A and B, holding private input bits x and y respectively, may
use such an OT protocol for computing the product xy. Hence, this is an alternative solution
for matching without embarrassments. Focusing, again, on the passive case, we see that this
problem can be handled using just a single run of a

(
2
1

)
-OT protocol, say in which A plays

§7.4 Bibliographic Notes 75

the role of sender and B the role of receiver. The important observation is that

OT (x0, x1; s) = xs = x0(1− s)⊕ x1s,

which implies that if A uses 0 and x as values to send, and B uses y as selection bit, then we
get OT (0, x; y) = 0(1− y)⊕ xy = xy.

More generally, it is possible to let two parties A and B multiply bits x and y securely,
such that neither of them learns the values of x, y, and z = xy. This is done by letting A
and B additively share these values, that is, at the start of the protocol A holds bits xa, ya
and B holds bits xb, yb satisfying x = xa ⊕ xb and y = ya ⊕ yb, and at the end A will hold a
bit za and B a bit zb satisfying z = za ⊕ zb.

Of course, the shares held by A should be independent of the values x, y, z and the same
should be true for B. Only if the shares are combined, the values x, y, z will result. A first
attempt is to write xy = (xa⊕ xb)(ya⊕ yb) = xaya⊕ xayb⊕ xbya⊕ xbyb, but it is unclear how
to split this into shares za and zb. Surely, the terms xaya and xbyb can be computed by A
and B on their own, whereas the terms xayb and xbya can be computed by two applications
of the above protocol for the case of private inputs. However, by assembling za and zb from
these values, shares za and zb will not be completely independent of shares xb, yb and xa, ya,
respectively, which is also necessary for security.

The way out is to let both A and B contribute some randomness to the protocol. Con-
cretely, each of them chooses a random bit ua, ub ∈R {0, 1}, respectively, and uses it in a run
of the OT protocol. The shares of z = xy are computed symmetrically like this:

za = xaya ⊕ ua ⊕OT (ub, xb ⊕ ub; ya) = xaya ⊕ ua ⊕ ub ⊕ xbya
zb = xbyb ⊕ ub ⊕OT (ua, xa ⊕ ua; yb) = xbyb ⊕ ub ⊕ ua ⊕ xayb.

Clearly, the share za is now uniformly distributed and independent of all other values if ub is
selected uniformly at random (as an honest B will do), and similarly for zb.

7.4 BIBLIOGRAPHIC NOTES

The basic results for secure multiparty computation date back to Yao’s papers [Yao82a,
Yao86], who focuses on the two-party case (and considers the millionaires problem as a con-
crete example), and to [GMW87, BGW88, CCD88] for the multiparty case. The electronic
voting scheme is from [CGS97]; see [Sch10] for a survey of cryptographic voting schemes.
The general approach for secure multiparty computation based on threshold homomorphic
cryptosystems is due to [CDN01], whereas the adaptation to ElGamal is from [ST04]. Interest-
ingly, the use of homomorphic cryptosystems for secure computation was already put forward
in [RAD78], as a positive twist to the insecurity of plain versions of RSA, in which the RSA
encryption and digital signature schemes are used without any message padding [RSA78].

The basic form of oblivious transfer in which the receiver gets the bit with 50% proba-
bility (and otherwise an undefined value) is due to Rabin [Rab81]. The (polynomial time)
equivalence to

(
2
1

)
-OT was shown in [Cré87]. Kilian showed that OT is complete for se-

cure multiparty computation, which basically means that protocols for securely evaluating
any given efficiently computable function f can be built from OT only [Kil88]. His result
covers the active case by showing how to implement the required commitments and zero-
knowledge proofs from OT, whereas the case of passive adversaries had already been covered
by [GMW87] (for which the sub-protocol described in Section 7.3 is an efficiency improvement
due to [GV88]).

CHAPTER 8

Blind Signatures

A digital signature scheme provides the basic functionality of authentication of messages,
allowing the holder of a private key to produce signatures on arbitrary messages. In many
applications, however, there is a need for cryptographic schemes which are similar to digital
signatures but not quite the same. The group signatures of Section 5.4.3 are an example. In
this chapter, we will consider blind signature schemes as another variation.

Suppose we like to build an electronic payment scheme in which a bank issues electronic
money to users who may then spend it at various shops. In such a scheme the bank may issue
electronic money by sending the users digitally signed messages saying “This is a banknote
worth $20. Serial number: P01144099136.” To spend electronic money at a shop, the user
will include such an electronic banknote in a payment to the shop. Since these banknotes are
trivial to duplicate, however, the shop needs to deposit any received banknotes immediately
at the bank to make sure that these banknotes have not been spent already at some other
shop. The bank keeps a database containing all spent banknotes, and each banknote can be
used for payment only once. If a payment to a shop contains a banknote that was already
spent before, the payment is rejected.

Now, a basic property of any such payment scheme is that the bank is able to trace exactly
at which places a user spends its money. This is due to the fact that in a digital signature
scheme the signer gets to see all the messages it signs, and obviously, the signer knows all
the signatures it produces for these messages. To achieve the level of anonymity as provided
by cash payments using (metal) coins, where payment transactions need not leave any trace
about the identity of the payers, one may use blind signatures instead of (ordinary) digital
signatures.

8.1 DEFINITION

Like digital signatures, blind signatures are unforgeable and can be verified against a public
key. The difference is that blind signatures are generated by means of a protocol between
the signer and a receiver such that the signer does not see the message being signed. And, in
addition, the signer does not learn any useful information on the signature being produced.

DEFINITION 8.1 A blind signature scheme consists of the following three components.

Key generation. An algorithm that on input of a security parameter k, generates a key
pair (sk, pk) consisting of a private key and a public key, respectively.

76

§8.2 Chaum Blind Signature Scheme 77

Signature generation. A two-party protocol between a signer S and a receiver R with a
public key pk as common input. Private input of S is a private key sk, and private
input of R is a message M . At the end of the protocol, R obtains a signature S on M
as private output.

Signature verification. An algorithm that on input of a message M , a public key pk, and
a signature S, determines whether S is a valid signature on M with respect to public
key pk.

The two basic security requirements for a blind signature scheme are unforgeability and
unlinkability, which we state informally as follows. Let (sk, pk) be a key pair for a blind
signature scheme. A pair (M,S) is valid if signature verification of M and S with respect to
public key pk succeeds.

A blind signature scheme is unforgeable if for an adversary (not knowing sk) the only
feasible way to obtain valid pairs (M,S) is to execute the signature generation protocol with
a signer holding private key sk. More precisely, a blind signature scheme should withstand a
one-more forgery: if an adversary is able to obtain ` valid pairs of messages and signatures,
then the signer executed the signature generation protocol at least ` times. Preferably, we
like this to hold for any positive ` bounded polynomially in the security parameter k.

A blind signature scheme is unlinkable if for an adversary (colluding with a signer) it is
infeasible to link any valid pair (M,S) to the instance of the signature generation protocol in
which it was created. More precisely, suppose a signer S and a receiver R play the following
game. First they run the signature generation protocol resulting in a pair (M0, S0) and then
they run it once more, resulting in (M1, S1). Then R flips a coin, that is, chooses b ∈R {0, 1}
and sends (Mb, Sb), (M1−b, S1−b) (in this order) to S. Finally, S makes a guess for the value
of b. Unlinkability means that the probability of S guessing b correctly is 1

2 , except for a
difference negligible in the security parameter k.

8.2 CHAUM BLIND SIGNATURE SCHEME

Recall the RSA digital signature scheme, in which a public key consists of an RSA modulus
m = pq and a public exponent e, with gcd(e, φ(m)) = 1, and a corresponding private key
consists of prime factors p, q and the private exponent d = 1/e mod φ(m). A signature S on a
message M ∈ {0, 1}∗ is generated as S = H(M)d mod m, where H is a suitable cryptographic
hash function.1 A signature is verified by checking that Se = H(M) mod m.

Chaum’s blind signature scheme is a modification of the RSA scheme, where signature
generation is done using the protocol of Figure 8.1. The role of the signer is simply to extract
an eth root for any value y ∈ Z∗m it gets from a receiver. Thus a receiver is able to get
signatures on arbitrary messages M ∈ {0, 1}∗. Instead of simply sending H(M) to the signer,
however, the receiver blinds it by sending y = H(M)ue, where u is a random value, called
a blinding factor. After receiving x = y1/e, the receiver is able to unblind it such that a
signature on M is obtained after all:

Se = (x/u)e = (y1/e/u)e = y/ue = H(M) mod m.

1A so-called full-domain hash function H : {0, 1}∗ → Z∗m should be used.

78 CHAPTER 8 Blind Signatures

Signer Receiver
(d = 1/e mod φ(m))

u ∈R Z∗m
y ←m H(M)ue

←−−−−−
y
−−−−−

x←m yd

−−−−−
x
−−−−−−→

S ←m x/u

Se
?
=m H(M)

FIGURE 8.1: Chaum’s blind signature protocol

Signer Receiver
(x = logg h)

u ∈R Zn
a← gu −−−−−

a
−−−−−→ s, t ∈R Zn

a′ ← agsh−t

c′ ← H(a′,M)

←−−−−−
c
−−−−− c←n c

′ − t
r ←n u+ cx

−−−−−
r
−−−−−→

r′ ←n r + s

gr
′ ?

= a′hc
′

FIGURE 8.2: Schnorr-based blind signature protocol

The use of a blinding factor u ∈ Z∗m ensures that the pair (M,S) is statistically indepen-
dent of the pair (x, y), implying (perfect) unlinkability. On the other hand, it is not known
whether unforgeability holds for Chaum’s blind signature scheme under the standard RSA as-
sumption (cf. Exercise 1.34). Under a special type of RSA assumption it is possible, however,
to prove that the scheme is unforgeable.

EXERCISE 8.2 Consider Chaum’s blind signature protocol (Figure 8.1) for a fixed message
M . Show that the pair (x, y) is distributed uniformly random by proving that Pr[(x, y) =
(x0, y0)] = 1/φ(m) for any x0, y0 ∈ Z∗m satisfying y0 = xe0 mod m.

8.3 BLIND SIGNATURES FROM Σ-PROTOCOLS

All of the Σ-protocols we have seen so far enjoy the property that the verification relation
is homomorphic. For example, referring to Schnorr’s protocol of Figure 4.3, we have the
following homomorphic property for two accepting conversations (a; c; r) and (a′; c′; r′):

gr = ahc, gr
′

= a′hc
′ ⇒ gr+r

′
= aa′hc+c

′
.

That is, (aa′; c + c′; r + r′) is an accepting conversation as well. For this reason it is easy
to obtain blind signature schemes from Σ-protocols. Figure 8.2 shows a blind signature

§8.4 Bibliographic Notes 79

protocol based on Schnorr’s protocol. The output of the protocol is a signature S = (c′, r′)
on message M satisfying c′ = H(gr

′
h−c

′
,M), which is the same verification relation as for

Schnorr signatures.
The completeness of the protocol is easily checked:

gr
′

= gr+s = ahcgs = a′g−shthc
′−tgs = a′hc

′
.

One may think of the triple (gsh−t; t; s) as a simulated conversation, which is multiplied with
conversation (a; c; r) to obtain a blinded conversation (a′; c′; r′) = (agsh−t; c+ t; r+ s), using
the above-mentioned homomorphic property for accepting conversations.

It is also clear that the triples (a; c; r) and (a′; c′; r′) are statistically independent, ensuring
(perfect) unlinkability.

As for unforgeability, however, it turns out that one-more forgeries can only be provably
excluded when the adversary is limited to a relatively small number of interactions with the
signer.2

EXERCISE 8.3 Consider the Schnorr-based blind signature protocol (Figure 8.2) for a fixed
message M . Show that the triples (a, c, r), (a′, c′, r′) are distributed uniformly random and
independent of each other by proving that Pr[(a; c; r) = (a0; c0; r0) ∧ (a′; c′; r′) = (a′0; c′0; r′0)] =
1/n3 for any (a0; c0; r0), (a′0; c′0; r′0) satisfying gr0 = a0h

c0 , c′0 = H(a′0,M), and gr
′
0 = a′0h

c′0 .

8.4 BIBLIOGRAPHIC NOTES

The notion of blind signatures was introduced by Chaum at CRYPTO’82 [Cha83], who also
presented the first blind signature protocol at CRYPTO’83 [Cha84] (see also the corresponding
patent [Cha88]). Originally, one of the main applications of blind signatures was anonymous
electronic cash, which formed together with follow-up patents the core technology of the
eCash system (developed by Chaum’s company DigiCash when the world wide web was spun
in the early 1990s, see also [Sch97]).

The idea that for many protocols, including Σ-protocols, one may render blind signature
schemes in a systematic way is from Okamoto and Ohta [OO90]. The technique is called
divertibility , and in the case of Σ-protocols, divertibility boils down to an intermediate party
blinding and unblinding the messages exchanged between a prover and a verifier. This way
unlinkability is ensured, but whether the resulting blind signature scheme is unforgeable as
well depends on more specific properties of the underlying Σ-protocol.

For instance, Pointcheval and Stern [PS00] have shown that by diverting Okamoto’s
witness-indistinguishable Σ-protocol (see Figure 4.5), one obtains a blind signature scheme
which is unforgeable as long as the number of (parallel) runs in which an attacker may engage
is sufficiently small as a function of a security parameter; moreover, there actually exists a
subexponential attack on this blind signature scheme if the attacker is allowed to engage in
(too) many parallel runs, as shown by Wagner [Wag02]. A possible countermeasure for this
type of attack is to limit the number of parallel runs that can be active at any given mo-
ment in time, but such a limitation may be undesirable in some situations and may be hard
to enforce. Using more advanced—but also costlier—techniques, it is possible to get blind
signature schemes without such limitations; see, e.g., [Fis06].

2In fact, when many interactions with the signer can be executed in parallel a one-more forgery becomes
possible under certain circumstances.

Bibliography

[AL83] D. Angluin and D. Lichtenstein. Provable security of cryptosystems: A survey.
Technical Report TR-288, Yale University, October 1983.

[BCDP91] J. Boyar, D. Chaum, I. Damg̊ard, and T. Pedersen. Convertible undeniable sig-
natures. In Advances in Cryptology—CRYPTO ’90, volume 537 of Lecture Notes
in Computer Science, pages 189–205, Berlin, 1991. Springer-Verlag.

[BDF98] D. Boneh, G. Durfee, and Y. Frankel. An attack on RSA given a small fraction of
the private key bits. In Advances in Cryptology—ASIACRYPT ’98, volume 1514
of Lecture Notes in Computer Science, pages 25–34, Berlin, 1998. Springer-Verlag.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. 20th Symposium
on Theory of Computing (STOC ’88), pages 1–10, New York, 1988. A.C.M.

[Bla79] G. R. Blakley. Safeguarding cryptographic keys. In Proceedings of the National
Computer Conference 1979, volume 48 of AFIPS Conference Proceedings, pages
313–317, 1979.

[Blu82] M. Blum. Coin flipping by telephone. In A. Gersho, editor, Advances in
Cryptology—CRYPTO ’81, pages 133–137. IEEE, 1982.

[BM92] S. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In IEEE Symposium on Research in Security
and Privacy, pages 72–84. IEEE Computer Society Press, 1992.

[BM03] C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment.
Springer, Berlin, 2003.

[Bon98] D. Boneh. The decision Diffie-Hellman problem. In Third Algorithmic Number
Theory Symposium, volume 1423 of Lecture Notes in Computer Science, pages
48–63, Berlin, 1998. Springer-Verlag.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In 1st ACM Conference on Computer and Communications
Security, Fairfax, pages 62–73. ACM press, 1993.

[Bra93] S. Brands. An efficient off-line electronic cash system based on the representation
problem. Report CS-R9323, Centrum voor Wiskunde en Informatica, Amsterdam,
March 1993.

80

Bibliography 81

[Bra97] S. Brands. Rapid demonstration of linear relations connected by boolean oper-
ators. In Advances in Cryptology—EUROCRYPT ’97, volume 1233 of Lecture
Notes in Computer Science, pages 318–333, Berlin, 1997. Springer-Verlag.

[Cam97] J. Camenisch. Efficient and generalized group signatures. In Advances in
Cryptology—EUROCRYPT ’97, volume 1233 of Lecture Notes in Computer Sci-
ence, pages 465–479, Berlin, 1997. Springer-Verlag.

[CCD88] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols. In Proc. 20th Symposium on Theory of Computing (STOC ’88), pages
11–19, New York, 1988. A.C.M.

[CD98] R. Cramer and I. Damg̊ard. Zero-knowledge proofs for finite field arithmetic,
or: Can zero-knowledge be for free? In Advances in Cryptology—CRYPTO ’98,
volume 1462 of Lecture Notes in Computer Science, pages 424–441, Berlin, 1998.
Springer-Verlag.

[CDN01] R. Cramer, I. Damg̊ard, and J.B. Nielsen. Multiparty computation from threshold
homomorphic encryption. In Advances in Cryptology—EUROCRYPT ’01, volume
2045 of Lecture Notes in Computer Science, pages 280–300, Berlin, 2001. Springer-
Verlag. Full version eprint.iacr.org/2000/055, October 27, 2000.

[CDS94] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In Advances in Cryptology—
CRYPTO ’94, volume 839 of Lecture Notes in Computer Science, pages 174–187,
Berlin, 1994. Springer-Verlag.

[CFSY96] R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-authority secret
ballot elections with linear work. In Advances in Cryptology—EUROCRYPT ’96,
volume 1070 of Lecture Notes in Computer Science, pages 72–83, Berlin, 1996.
Springer-Verlag.

[CGS97] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient
multi-authority election scheme. In Advances in Cryptology—EUROCRYPT ’97,
volume 1233 of Lecture Notes in Computer Science, pages 103–118, Berlin, 1997.
Springer-Verlag.

[CH91] D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology—
EUROCRYPT ’91, volume 547 of Lecture Notes in Computer Science, pages 257–
265, Berlin, 1991. Springer-Verlag.

[Cha83] D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R.L. Rivest,
and A.T. Sherman, editors, Advances in Cryptology—CRYPTO ’82, pages 199–
203, New York, 1983. Plenum Press.

[Cha84] D. Chaum. Blind signature system. In Advances in Cryptology—CRYPTO ’83,
page 153, New York, 1984. Plenum Press.

[Cha88] D. Chaum. Blind signature systems. U.S. Patent #4,759,063, 1988. Issued on
July 19, 1988, filed on August 22, 1983.

eprint.iacr.org/2000/055

82 Bibliography

[CJ02] D. Coppersmith and M. Jakobsson. Almost optimal hash sequence traversal. In
Financial Cryptography 2002, volume 2357 of Lecture Notes in Computer Science,
pages 102–119, Berlin, 2002. Springer-Verlag.

[CP93] D. Chaum and T. P. Pedersen. Wallet databases with observers. In Advances
in Cryptology—CRYPTO ’92, volume 740 of Lecture Notes in Computer Science,
pages 89–105, Berlin, 1993. Springer-Verlag.

[Cra97] R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD
thesis, Universiteit van Amsterdam, Netherlands, 1997.

[Cré87] C. Crépeau. Equivalence between two flavours of oblivious transfer. In Advances
in Cryptology—CRYPTO ’87, volume 293 of Lecture Notes in Computer Science,
pages 350–354, Berlin, 1987. Springer-Verlag.

[Dam10] I. Damg̊ard. On Σ-protocols, 2010. www.daimi.au.dk/~ivan/Sigma.pdf.

[Des88] Y. Desmedt. Society and group oriented cryptography: A new concept. In Ad-
vances in Cryptology—CRYPTO ’87, volume 293 of Lecture Notes in Computer
Science, pages 120–127, Berlin, 1988. Springer-Verlag.

[Des94] Y. Desmedt. Threshold cryptography. European Transactions on Telecommuni-
cations, 5(4):449–457, 1994.

[DF90] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Advances in
Cryptology—CRYPTO ’89, volume 435 of Lecture Notes in Computer Science,
pages 307–315, Berlin, 1990. Springer-Verlag.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[ElG85] T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, IT-31(4):469–472, 1985.

[Fel87] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In
Proc. 28th IEEE Symposium on Foundations of Computer Science (FOCS ’87),
pages 427–437. IEEE Computer Society, 1987.

[FF93] J. Feigenbaum and L. Fortnow. On the random-self-reducibility of complete sets.
SIAM Journal on Computing, 22:994–1005, 1993.

[FFS88] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Journal of
Cryptology, 1(2):77–94, 1988.

[Fis06] M. Fischlin. Round-optimal composable blind signatures in the common reference
string model. In Advances in Cryptology—CRYPTO ’06, volume 4117 of Lecture
Notes in Computer Science, pages 60–77, Berlin, 2006. Springer-Verlag.

[FMR96] M. J. Fischer, S. Micali, and C. Rackoff. A secure protocol for the oblivious
transfer (extended abstract). Journal of Cryptology, 9(3):191–195, 1996.

www.daimi.au.dk/~ivan/Sigma.pdf

Bibliography 83

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Advances in Cryptology—CRYPTO ’86, volume 263
of Lecture Notes in Computer Science, pages 186–194, New York, 1987. Springer-
Verlag.

[FS90] U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols.
In Proc. 22nd Symposium on Theory of Computing (STOC ’90), pages 416–426,
New York, 1990. A.C.M.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interac-
tive proof systems. SIAM Journal on Computing, 18:186–208, 1989. Preliminary
version in 17th ACM Symposium on the Theory of Computing (STOC ’85).

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game - or - a
completeness theorem for protocols with honest majority. In Proc. 19th Symposium
on Theory of Computing (STOC ’87), pages 218–229, New York, 1987. A.C.M.

[GQ88] L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory. In Advances
in Cryptology—EUROCRYPT ’88, volume 330 of Lecture Notes in Computer Sci-
ence, pages 123–128, Berlin, 1988. Springer-Verlag.

[GV88] O. Goldreich and R. Vainish. How to solve any protocol problem–an efficiency
improvement. In Advances in Cryptology—CRYPTO ’87, volume 293 of Lecture
Notes in Computer Science, pages 73–86, Berlin, 1988. Springer-Verlag.

[IR01] G. Itkis and L. Reyzin. Forward-secure signatures with optimal signing and ver-
ifying. In Advances in Cryptology—CRYPTO ’01, volume 2139 of Lecture Notes
in Computer Science, pages 332–354, Berlin, 2001. Springer-Verlag.

[Jak02] M. Jakobsson. Fractal hash sequence representation and traversal. In Proc. IEEE
International Symposium on Information Theory (ISIT ’02), page 437. IEEE
Press, 2002. Full version eprint.iacr.org/2002/001.

[Kil88] J. Kilian. Founding cryptography on oblivious transfer. In Proc. 20th Symposium
on Theory of Computing (STOC ’88), pages 20–31, New York, 1988. A.C.M.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203–
209, 1987.

[Lam81] L. Lamport. Password authentication with insecure communication. Communi-
cations of the ACM, 24(11):770–772, 1981.

[Mer87] R. Merkle. A digital signature based on a conventional encryption function. In
Advances in Cryptology—CRYPTO ’87, volume 293 of Lecture Notes in Computer
Science, pages 369–378, Berlin, 1987. Springer-Verlag.

eprint.iacr.org/2002/001

84 Bibliography

[Mer89] R. Merkle. A certified digital signature. In Advances in Cryptology—CRYPTO
’89, volume 435 of Lecture Notes in Computer Science, pages 218–238, Berlin,
1989. Springer-Verlag.

[Mil86] V. S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology—
CRYPTO ’85, volume 218 of Lecture Notes in Computer Science, pages 417–426,
Berlin, 1986. Springer-Verlag.

[MOV97] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

[NR97] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In Proc. 38th IEEE Symposium on Foundations of Computer
Science (FOCS ’97), pages 458–467. IEEE Computer Society, 1997.

[Oka93] T. Okamoto. Provably secure and practical identification schemes and correspond-
ing signature schemes. In Advances in Cryptology—CRYPTO ’92, volume 740 of
Lecture Notes in Computer Science, pages 31–53, Berlin, 1993. Springer-Verlag.

[OO90] T. Okamoto and K. Ohta. Divertible zero knowledge interactive proofs and com-
mutative random self-reducibility. In Advances in Cryptology—EUROCRYPT ’89,
volume 434 of Lecture Notes in Computer Science, pages 134–149, Berlin, 1990.
Springer-Verlag.

[Ped91] T. P. Pedersen. A threshold cryptosystem without a trusted party. In Advances
in Cryptology—EUROCRYPT ’91, volume 547 of Lecture Notes in Computer Sci-
ence, pages 522–526, Berlin, 1991. Springer-Verlag.

[Ped92] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Advances in Cryptology—CRYPTO ’91, volume 576 of Lecture Notes
in Computer Science, pages 129–140, Berlin, 1992. Springer-Verlag.

[PS00] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, 2000.

[Rab81] M. Rabin. How to exchange secrets by oblivious transfer. Technical Memo TR-81,
Aiken Computation Laboratory, Harvard University, 1981.

[RAD78] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomor-
phisms. In Foundations of Secure Computation, pages 169–177. Academic Press,
1978.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,
1978. Reprinted in 1983 in 26(1):96–99.

[Sch91] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

[Sch97] B. Schoenmakers. Basic security of the eCash payment system. In State of the
Art in Applied Cryptography, volume 1528 of Lecture Notes in Computer Science,

Bibliography 85

pages 338–352, Berlin, 1997. Springer-Verlag. Correct version available at www.

win.tue.nl/~berry/papers/cosic.pdf.

[Sch10] B. Schoenmakers. Voting schemes. In M.J. Atallah and M. Blanton, editors,
Algorithms and Theory of Computation Handbook: Special Topics and Techniques,
chapter 15, pages 15–1–21. Chapman & Hall/CRC, 2nd edition, 2010.

[Sch14] B. Schoenmakers. Explicit optimal binary pebbling for one-way hash chain rever-
sal. eprint.iacr.org/2014/329, May 2014. To appear at Financial Cryptogra-
phy 2016.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[Sho99] V. Shoup. On formal models for secure key exchange. Report RZ 3120, IBM
Research, Zurich, April 1999. See also, updated paper (version 4, November 15,
1999), available at www.shoup.net/papers/skey.pdf.

[ST04] B. Schoenmakers and P. Tuyls. Practical two-party computation based on the
conditional gate. In Advances in Cryptology—ASIACRYPT ’04, volume 3329 of
Lecture Notes in Computer Science, pages 119–136, Berlin, 2004. Springer-Verlag.

[Sta96] M. Stadler. Publicly verifiable secret sharing. In Advances in Cryptology—
EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science, pages
190–199, Berlin, 1996. Springer-Verlag.

[Szy04] M. Szydlo. Merkle tree traversal in log space and time. In Advances in
Cryptology—EUROCRYPT ’04, volume 3027 of Lecture Notes in Computer Sci-
ence, pages 541–554, Berlin, 2004. Springer-Verlag.

[TW87] M. Tompa and H. Woll. Random self-reducibility and zero knowledge interactive
proofs of possession. In Proc. 28th IEEE Symposium on Foundations of Computer
Science (FOCS ’87), pages 472–482. IEEE Computer Society, 1987.

[Wag02] D. Wagner. A generalized birthday problem. In Advances in Cryptology—
CRYPTO ’02, volume 2442 of Lecture Notes in Computer Science, pages 288–304,
Berlin, 2002. Springer-Verlag.

[Yao82a] A. Yao. Protocols for secure computations. In Proc. 23rd IEEE Symposium on
Foundations of Computer Science (FOCS ’82), pages 160–164. IEEE Computer
Society, 1982.

[Yao82b] A. Yao. Theory and applications of trapdoor functions. In Proc. 23rd IEEE
Symposium on Foundations of Computer Science (FOCS ’82), pages 80–91. IEEE
Computer Society, 1982.

[Yao86] A. Yao. How to generate and exchange secrets. In Proc. 27th IEEE Symposium on
Foundations of Computer Science (FOCS ’86), pages 162–167. IEEE Computer
Society, 1986.

www.win.tue.nl/~berry/papers/cosic.pdf
www.win.tue.nl/~berry/papers/cosic.pdf
eprint.iacr.org/2014/329
www.shoup.net/papers/skey.pdf

	Preface
	Contents
	1 Introduction
	1.1 Terminology
	1.2 Preliminaries
	1.2.1 Number Theory
	1.2.2 Group Theory
	1.2.3 Probability Theory
	1.2.4 Complexity Theory

	1.3 Assumptions
	1.3.1 Discrete Log and Diffie-Hellman Assumptions
	1.3.2 Indistinguishability
	1.3.3 Random Self-Reducibility
	1.3.4 Random Oracle Model

	1.4 Bibliographic Notes

	2 Key Exchange Protocols
	2.1 Diffie-Hellman Key Exchange
	2.1.1 Basic Protocol
	2.1.2 Passive Attacks
	2.1.3 A Practical Variant
	2.1.4 Aside: ElGamal Encryption

	2.2 Authenticated Key Exchange
	2.2.1 Man-in-the-Middle Attacks
	2.2.2 A Protocol Using Digital Signatures
	2.2.3 A Protocol Using Password-Based Encryption

	2.3 Bibliographic Notes

	3 Commitment Schemes
	3.1 Definition
	3.2 Examples
	3.2.1 Using a Cryptographic Hash Function
	3.2.2 Using a Discrete Log Setting
	3.2.3 Impossibility Result

	3.3 Homomorphic Commitments
	3.4 Bibliographic Notes

	4 Identification Protocols
	4.1 Definitions
	4.2 Password-based Schemes
	4.3 One-Way Hash Chains
	4.4 Basic Challenge-Response Protocols
	4.4.1 Using Symmetric Encryption
	4.4.2 Using Symmetric Authentication
	4.4.3 Using Asymmetric Encryption
	4.4.4 Using Asymmetric Authentication

	4.5 Zero-knowledge Identification Protocols
	4.5.1 Schnorr Zero-knowledge Protocol
	4.5.2 Schnorr Protocol
	4.5.3 Guillou-Quisquater Protocol

	4.6 Witness Hiding Identification Protocols
	4.6.1 Okamoto Protocol

	4.7 Bibliographic Notes

	5 Zero-Knowledge Proofs
	5.1 Sigma-Protocols
	5.2 Composition of Sigma-Protocols
	5.2.1 Parallel Composition
	5.2.2 AND-Composition
	5.2.3 EQ-Composition
	5.2.4 OR-Composition
	5.2.5 NEQ-Composition

	5.3 Miscellaneous Constructions
	5.4 Non-interactive Sigma-Proofs
	5.4.1 Digital Signatures from Sigma-Protocols
	5.4.2 Proofs of Validity
	5.4.3 Group Signatures

	5.5 Bibliographic Notes

	6 Threshold Cryptography
	6.1 Secret Sharing
	6.1.1 Shamir Threshold Scheme

	6.2 Verifiable Secret Sharing
	6.2.1 Feldman VSS
	6.2.2 Pedersen VSS

	6.3 Threshold Cryptosystems
	6.3.1 Threshold ElGamal Cryptosystem

	6.4 Bibliographic Notes

	7 Secure Multiparty Computation
	7.1 Electronic Voting
	7.2 Based on Threshold Homomorphic Cryptosystems
	7.3 Based on Oblivious Transfer
	7.4 Bibliographic Notes

	8 Blind Signatures
	8.1 Definition
	8.2 Chaum Blind Signature Scheme
	8.3 Blind Signatures from Sigma-Protocols
	8.4 Bibliographic Notes

	Bibliography

