
Securely Migrating Digital Identities
from a Class PKI to a Blockchain

Bastian FredrikssonB
Royal Institute of Technology
114 28, Lindstedtsvägen 3

Stockholm, Sweden
bastianf@kth.se

Keywords
Certificate authority, Digital identity management,

PKI, Blockchain

ABSTRACT
The current hierarchical public key infrastructure used to
authenticate machines on the internet is deeply flawed. A
single certificate authority can compromise the security of
the whole system. A possible way of resolving this problem
would be to keep track of identities using a blockchain.
In this paper we propose a protocol for migrating an
identity in the current class PKI to a blockchain, by
pinning a certificate issued by a certificate authority on
the blockchain, and signing the transaction with the client’s
private key. The protocol is executed between a client and
a node administering a virtualchain, operating on top of
an existing blockchain. In order to validate transactions
on the blockchain, we introduce the notion of a blockchain
truststore. We also show how security improvements to TLS,
such as Certificate Transparency, Public Key-pinning and
OCSP stapling can be used to strengthen our protocol. To
ensure that a migration is performed with the consent of the
owner, an additional step for extended validation certificates
is proposed, where a certificate authority needs to attest to
a registration being performed correctly.

1. INTRODUCTION

1.1 Blockchains
Blockchains was originally introduced as a way of

storing transactions for the Bitcoin cryptocurrency[15]. A
blockchain is a public ledger shared among all nodes, called
miners, in a large P2P-network. For miners to append a new
block to the Bitcoin blockchain, one needs to provide a proof-
of-work SHA22(s|c) where s is a service string containing the
information encoded in the block header and c is a 32-bit
counter such that SHA22(s|c) < 2(n−k) where n = 256 is the
number of output bits in the SHA2 hash function and k is a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANSS ’17 Jan 1–31, 2017, Stockholm, SE
c© 2017 ACM. ISBN 000-0000-00-000/00/00. . . $13.37

DOI: 00.000/000 0

difficulty factor, collectively determined by the nodes in the
network every 2016 blocks, such that on average a new block
in appended to the blockchain every 10 minutes[2]. Other
proof systems such as proof of stake, proof of burn and proof
of storage has been proposed. A list of transactions is linked
to a block by putting a Merkle root hash in the block header.
This makes it possible to validate a blockchain using only the
block headers, while the actual transactions can be stored
elsewhere.

Miners participating in building the blockchain will always
try to continue on the longest chain in terms of difficulty.
If two miners find a new block at approximately the same
time, two chains of equal difficulty are created. Only one
of these two blocks will survive, meaning that blockchains
does not need to be consistent across the network. Blocks
are verified by consecutive blocks being appended. The
probability of a block to remain in the blockchain increases
exponentially with the number of consecutive blocks, and
a block is typically considered confirmed after about six
consecutive blocks have been appended.

There are several systems based on blockchains, including
Namecoin[12] a replacement for DNS running on its
own blockchain, Blockstack[1] a blockchain agnostic,
decentralized DNS and PKI, and Certcoin[4] a PKI forked
off from Namecoin, Storj[18] a decentralized cloud storage
solution, and Ethereum[6] a system which powers smart
contracts, programs excecuted on a blockchain.

1.2 Class PKI
Identity on the internet today, is largely1 administered by

a hierarchical PKI (or class PKI) consisting of certificate
authorities (CA) which issues X.509 certificates. The
information contained in these certificates are signed by
the CA, using a public-key cryptosystem (typically RSA).
Certificates no longer in use, or otherwise compromised
through leakage of the client’s private key, must be revoked.
Current revocation mechanism involves use of certificate
revocation lists (CRL)[5] and validation of a certificate
through a protocol called Online Certificate Status Protocol
OCSP[16].

The highly centralized nature of the current PKI system
has several disadvantages. First and foremost, a CA
constitutes a single point of failure, which makes it an
obvious target for attacks. One compromised CA will
endanger the trust of the whole system, as shown by

1Another mechanism of trust which is commonly used,
e.g by Linux packet managers, is Web of Trusts which is
described in the OpenPGP standard[3].

00.000/000_0

the DigiNotar accident[11], the Comodo hack[8] and the
TürkTrust incident[14]. Thus, the current PKI system is
susceptible to invisible mitm-attacks, where a third party
intercepts and decrypts traffic en route. Secondly, it is
possible for an identity to be linked to several public keys,
which complicates the revocation process and leads to poor
identity retention.

1.3 Issuing certificates in a class PKI
A X.509 certificate, associated with a cryptographic

keypair and a common name (CN), is typically issued by
a certificate authority once a user proves that she controls
a specific domain, usually by responding to a mail sent to
the domain owner. These certificates will be referred to
as domain validated certificates (DV Certificates). Another
type of certificate, called extended validation certificates
(EV Certificates) are typically harder to obtain since the
CA has strict procedures in place which requires them to
verify the physical identity of the person or organization
who receives the certificate.

While issuing certificates mostly is an ad hoc process,
some CAs offers a more streamlined process where DV
certificates are issued and installed automatically using a
web client. One such solution is Certbot which implements
the Automated Certificate Management (ACME) protocol,
used by the Let’s Encrypt certificate authority.

The ACME client creates a CSR which is sent to the
certificate authority. Messages are encoded in JSON and
protected by HTTPS. The client executes a challenge
response protocol to prove knowledge of the secret key
corresponding to the public key in the CSR. Upon successful
response, the certificate authority answers with a JSON
message containing a link to the signed certificate[9].

1.4 Blockchain-based PKI
Blockchains looks like a possible replacement for the

current class PKI. It would solve the problem of CAs being
a single point of failure since the blockchain is distributed
making it more resilient against denial of service. Man in
the middle-attacks would be efficiently mitigated since the
public key is pinned on the blockchain, which in turn would
lead to better identity retention.

A blockchain-based approach also leads to new challenges.
For example, although the distributed nature of the
blockchain should make it scale better than a corresponding
class PKI - the number of transactions which can be
processed will be limited to the average network bandwidth
of the nodes participating in the network. The block size
is currently fixed to at most 1 MB in the Bitcoin network,
effectively limiting the number of transactions which can be
included in a block. In practice, the Bitcoin network is able
to process about 3 transactions every second.

Another problem is the endless ledger problem which
arises from the nodes in the network being forced to keep
track of all previous blocks, making it expensive to run a full
node. For example, the current size of the Bitcoin blockchain
(including transactions) is about 96 GB, growing at a rate
of about 10 GB/month2.

Anyone who designs a blockchain-based PKI which intend
to replace or coexist with an existing PKI must also deal
with the problem of an adversary maliciously registering an

2See https://blockchain.info/charts/blocks-size

identity on the blockchain which is already registered in the
class PKI. This is the issue which will be investigated in this
paper.

2. RELATED WORK
The most notable blockchain-based PKI systems are

Blockstack[1] and Certcoin[4]. Blockstack is a combined PKI
and DNS currently running on top of the Bitcoin blockchain,
although it is possible to migrate to another blockchain,
since the system itself is blockchain-agnostic. In order to
provide this kind of agility, Blockstack features provides a
virtualchain on top of the underlying blockchain being used.
The virtualchain is built by nodes running the Blockstack
software, which are parsing and filtering the transactions of
the Bitcoin blockchain.

Certcoin is a fork of the Namecoin blockchain which
features its own format for identity and transactions. Both
Certcoin and Blockstack assumes the legitimate owner of an
identity being the first person who registers that identity,
which is similar to how DNS works.

An interesting feature of Namecoin and derivatives
thereof, is that it requires a two-step registration-phase[1].
When a new domain is registered, a user first needs to
pre-order the domain by posting H(domain|key) to the
blockchain. This prevents a race condition between a
malicious user monitoring new domains being registered and
a legitimate user trying to register a domain. After the pre-
order transaction has been confirmed by the network, a user
reveals the previously pre-ordered domain by posting the
actual domain and the corresponding key to the blockchain.

Namecoin also requires a user to post two public keys to
the blockchain, namely one online key K1

pub and one offline

key K2
pub. The online key is deployed on the server or client

machine and is used to encrypt data and create signatures.
The offline key is kept secure offline, and is only used to
revoke or transfer to a new keypair if the online key gets
lost or compromised.

3. SYSTEM MODEL
The entities involved in our protocol is the client who

wants to migrate a certificate from a class PKI to a
blockchain, a certificate authority who is responsible for
signing any certificate requests created by the client, a set
of nodes operating a virtualchain, which will be called v-
nodes for brevity, and a blockchain network, operating any
sort of blockchain which allows for data to be appended to a
transaction (such as the Bitcoin blockchain). The assuption
of a virtualchain is not strictly required but simplifies
protocol design and provides agility since no particular
blockchain is assumed.

Define a registration object as a document with the
following fields:

RegistrationObject {

id = I
proofK1K2 = SigK1

privK
2
priv

(I)

cert = (CertK′ ,<OCSP)
SigK′

priv
(id|proof |cert)

}

With identity I we will assume something like a tuple
(CN, K1, K2), but we are not going to argue in favor of

https://blockchain.info/charts/blocks-size

any particular format, nor what content can be put therein,
an identity could potentially incorporate anything from ad-
dresses to biometric information.

The v-nodes support the following virtualchain operations:

ffl
PreOrder(H(I)) Pre-order an identity I, bound to the
two keypairs (K1

pub,K
1
priv) and (K2

pub,K
2
priv).

ffl
Register(RegistrationObject) Registers an identity
I whose CN has not been previously registered on the
blockchain.

ffl
Release(H(I)) Releases an identity I back to the pool
of unregistered identities.

ffl
Attest(L = {H(IX)|X ←↩ [1 . . . N]}, SigCApriv (L))
Confirm that the identities listed was correctly
transferred to the blockchain.

ffl
Edit(CN, Sig1, Sig2...) Change or add a public key
for a CA in the blockchain truststore.

ffl
Remove(CN, Sig1, Sig2...) Remove a CA from the
blockchain truststore.

Identities, certificates and signatures are typically too large
to post directly in the blockchain. Hence, will will assume
that the v-nodes maintain a distributed hash table, for
example Chord[17] or Kademlia[13], which makes it possible
to store only the hash of the data in the blockchain.

4. PROTOCOL DESCRIPTION

4.1 Overview
This section describes a protocol executed between a client

or a CA and network of v-nodes. The purpose of the protocol
is to securely migrate an existing identity, consisting of a
certificate signed by a CA, to a blockchain.

Consider a scenario where you can have your identity
confirmed either by a certificate signed by a CA or by a
transaction on the blockchain. A company, say Google, who
already have a certificate issued by a CA, want to migrate to
a blockchain due to security reasons. Since the first person
who registers an identity on the blockchain is considered the
owner of said identity, it would be possible to hijack Google’s
trademark if an adversary registers its own public key on the
blockchain in Google’s name before Google does. Thus there
is a risk of identity retention being violated if a class PKI is
allowed to coexist with a blockchain-based PKI.

Our protocol solves this problem by forcing v-nodes to
assert that a client has a certificate issued, and that the
client has knowledge of the secret key corresponding to
the public key stamped in the certificate. The certificate
together with the proof of the private key is pinned on the
blockchain for verification. To provide extra security for
companies with EV certificates, an extra step is required
after identity registration where a CA is attesting to a
certain registration being performed correctly.

We have decided to skip the pre-registration phase
required by Namecoin and its derivatives, since the use of
certificates makes such measures unnecessary.

4.2 The blockchain truststore
Before the blockchain is opened for write-access, a CA,

for example Symantec, posts a signed document to the
blockchain containing a list of all CAs currently in operation
and their corresponding public keys, a list of pinned keys[7]
and a list of domains which has an EV certificate issued
according to a certificate transparency log[10]. We call this
the blockchain truststore, which will be available at a well-
known block number.

The truststore can be edited through the virtualchain
operations Edit and Remove. Each such transaction must
be signed by multiple CAs currently in the truststore to be
considered valid.

The purpose of the blockchain truststore is to act as an
authority for which CAs that were in operation at a certain
point in time, their public keys, pinned keys and which
domains that require extended validation. This information
could be kept off the chain, but it would undermine the
security of the system since any such information could be
tampered with.

Consider a scenario where a person P has migrated a
certificate signed by CA which later became compromised
and declared bankrupt. A new v-node, trying to validate the
blockchain after this event, would consider P ’s registration
to be invalid since the CA is no longer in operation.
However, using a blockchain truststore, new v-nodes could
go back in time and determine if the CA existed at the time
the block was inserted into the chain.

4.3 Migrating a DV certificate
A domain validated (DV) certificate has been issued by a

certificate authority after verifying that an owner controls
the specific domain. Most certificates are of this type, and
they are cheaper than EV certificates. A migration process
should arguably be as automated as possible to reduce costs
and time for migration.

Our client protocol for migrating a DV certificate is as fol-
lows:

1. Request a certificate Request a certificate CertK′

from the CA if no certificate has been issued yet.
This process can be automated using for example the
ACME client mentioned in 1.3.

2. Initialize Generate the two keypairs (K1
pub,K

1
priv)

and (K2
pub,K

2
priv) and create an identity I.

3. Migrate Compute the key signature SigK1
privK

2
priv

(I)

of the identity I, under both the private online key
K1

priv and the private offline key K2
priv. Request a

time-stamped OCSP response <OCSP from the CA
and bundle it with CertK′ . Sign the identity, the
key signature, the certificate and the OCSP response
with the private key K′ of the certificate. Create a
registration object RI from this information and post
Register(RI) to the blockchain.

When a v-node discovers a registration on the blockchain
in step 4 above, it must check the following:

(R1) There must not be any valid Register transaction
posted previously, with the CN found in I.

(R2) The signature SigK′
priv

(id|proofK1K2 |cert) must be

valid.

(R3) The signature SigK1
privK

2
priv

(I) must be valid.

(R4) The CN of the certificate CertK′ matches the CN of
the identity I. Any other information found in the
certificate, such as address, which is also present in I
should also match.

(R5) CertK′ has not expired, has a valid CA signature
and is bundled with a correct OCSP response <OCSP

according to the blockchain truststore.

(R6) Additional requirement If the client has a pin in
the blockchain truststore it is imperative that the
public key of the certificate matches one of the pinned
keys.

(R7) Additional requirement If the client has an EV cer-
tificate issued according to the blockchain truststore,
assert that CertK′ is an EV certificate as well.

The keypair (K1
pub,K

1
priv) does not necessarily have to be

the same as the key attached to the certificate. However, to
avoid confusion or due to compatibility reasons, one might
prefer to use the same keypair in both the class PKI and the
blockchain.

4.4 Migrating an EV certificate
An extended validation (EV) certificate costs more than

an ordinary DV certificate due to the increased scrutiny
performed by the CA. Typically, an EV certificate validation
process involves verifying that the company or organization
exists, and that a request to issue the certificate was in fact
made by, or on behalf of, the company in question. Thus, an
EV certificate offers higher assurance that the certificate has
not been issued to a fraudulent party. With this in mind,
we propose an extra verification step for migration of such
certificates.

The CA should monitor the blockchain for new EV
certificates. The CA should ensure that the company or
organization of an EV certificate posted to the blockchain
wants their certificate migrated to the blockchain and that
the public keys posted in the registration request are valid.
On a regular basis, say every week, the CA creates a list
L = {H(IX)|X ←↩ [1 . . . N]} of all vetted EV certificates,
signs this list with their private key and posts Attest(L,
SigCApriv (L)) to the blockchain.

4.5 Booting up a v-node
New v-nodes needs to build a database from virtualchain

operations which maps public keys to identities before they
can start processing requests. This can be achieved either by
directly parsing and filtering the contents of the underlying
blockchain, or through bootstrapping information from
other nodes, which in Blockstack is called Simple Name
Verification (SNV). SNV helps v-nodes figure out if they
have the same view of the global state at any given block,
using a consensus hash computed over a list of virtualchain
operations[1].

A v-node loads the blockchain truststore, and starts
processing the virtualchain operations in a chronological
manner, starting at the oldest operation. A registration
operation can either be native if it belongs to the set of
CNs not managed by a CA (for example the .bit top
domain[12]), domain validated if it a migration performed

with a DV certificate, or CA validated if it is a migration
performed with an EV certificate.

For a registration of I to be accepted and inserted into
the v-node’s database, the following conditions apply:

X Native registrations R1, R3 and a registration must
be preceded by a confirmed PreOrder transaction
containing H(I).

X Domain validated registrations R1-R7.

X CA validated registrations R1-R7 and the registra-
tion must be succeeded by a confirmed Attest opera-
tion which confirms the correctness of the registration.

Note It is possible to determine whether the OCSP
response was valid and whether the certificate was expired
at the time it was posted to the blockchain by looking at the
timestamp of the block.

5. SECURITY ANALYSIS
Assuming the security of the underlying blockchain and

that a majority of v-nodes is not malicious, a migration
of a certificate should be secure as long as the CA is not
compromised and as long as the client’s private keys are
kept secret. A compromised CA could generate its own
keypairs and certificate and post it to the blockchain (unless
the victim employs public key-pinning). In order to steal
someone else’s identity, it would have to be done after the
person has her identity registered, but before the identity is
being migrated to the blockchain. Furthermore, a CA should
not be able to invalidate previous migrations. This property
is guaranteed since there is no mechanism of for a CA to
revoke an identity on the blockchain. Once a migration is
complete, all changes to the identity must be signed with one
of the private keys K1

priv, K2
priv only known to the owner.

Man in the middle A registration object being posted
on the blockchain could be intercepted by an attacker, who
would try to exchange the two keys K1 and K2 with her
own keys before sending the transaction to the blockchain.
However, this is not possible since the registration object
is authenticated with the private key of the certificate,
unknown to an adversary.

Signature leakage If the client has software installed
which act as a signature oracle, for example due to a software
bug, an adversary could register someone else’s identity with
his own private keys by tricking the victim into signing
id|proofK1K2 |cert with appropriate values. Such an attack
is only mitigated if the victim has an EV certificate in the
blockchain truststore, since a CA would not attest to such
a fraudulent transaction.

Reuse of signatures An adversary must not be able
to collect and reuse signatures, for example by interacting
with an SSH client or web server administered by the victim.
Our scheme protects against reuse of signatures by forcing
the client to provide a signature of id|proofK1K2 |cert.
The OCSP response and certificate contains data which is
random and not controlled by an attacker which prevents
signature reuse.

Using a revoked certificate This attack is mitigated
by bundling a time-stamped OCSP response with the
certificate, which proves that the certificate has not been
revoked. The use of OCSP stapling also makes it possible
for a v-node to validate a certificate without communication
with a CA.

EV downgrade attack An adversary who has gained
access to the victims private key could try to steal the
identity of the victim by migrating it to the blockchain
(assuming the victim has not done so previously). However,
if a victim has an EV certificate issued, knowledge of the
private key is not enough, since a CA must attest to a
migration being performed correctly. An adversary could
try to avoid the extra scrutiny by posting a DV certificate
instead. We prevent this by incorporating a list of domains
with EV certificates into the blockchain truststore. Due to
R7, any such registration would be considered invalid by a
v-node. We want to stress the fact that, in our design any
newly registered identities will not be protected against this
kind of attack, since their CNs will not be present in the
blockchain truststore. Hence, it is important to migrate the
identity to the blockchain as soon as possible, preferably at
the time the domain is registered.

6. CONCLUSION
We have proposed a protocol which allows a participant in

a class PKI to register their identity on a blockchain, while
ensuring identity retention. A fundamental building block
of this protocol is to pin a certificate on the blockchain to
prove that the person owns the identity, and the notion of
a blockchain truststore which keeps track of CAs currently
in operation. We have shown how security improvements to
TLS including Certificate Transparency, Public Key-pinning
and OCSP stapling can be used to guarantee the security of
the migration protocol. To ensure a secure migration, even
under circumstances where the private key has been exposed
to an adversary, we have proposed an additional step where a
CA attests to a migration being performed with the consent
of the owner.

Our protocol allows an existing class PKI to coexist with
a blockchain for improved security. Once a migration is
complete, a web server could offer an additional way of
authentication. Instead of trusting a CA, a client could
look up the identity in the blockchain. In addition, our
protocol could be used in a hybrid approach where a CA is
used to connect a digital identity to a physical person, and
transactions are performed on a blockchain.

The practicality of our approach to provide a more secure
PKI depends on the underlying blockchain as well as the
specific implementation. Although a blockchain offers built-
in certificate transparency and public key pinning, while
removing trust in third parties, it might not be a feasible
solution on low-powered devices due to increased storage
requirements. The blockchain approach might also allow an
adversary to permanently seizure a domain from its rightful
owner, if both the offline and online key leaks.

The author want to thank Mike Kushner for reviewing an
earlier version of this paper. The most recent version can
be found at https://helix.stormhub.org/anss.

References
[1] M. Ali, J. Nelson, R. Shea, and M. J. Freedman. Blockstack:

A global naming and storage system secured by blockchains.
In 2016 USENIX Annual Technical Conference (USENIX
ATC 16), pages 181–194, Denver, CO, June 2016. USENIX
Association.

[2] Bitcoin Wiki - Hashcash. https://en.bitcoin.it/wiki/Hashcash.
Accessed: 2017-01-02.

[3] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer.
Openpgp message format. RFC 4880, RFC Editor, November
2007. http://www.rfc-editor.org/rfc/rfc4880.txt.

[4] D. V. Conner Fromknecht and S. Yakoubov. A decentralized
public key infrastructure with identity retention. Cryptology
ePrint Archive, Report 2014/803, 2014. http://eprint.iacr.org/
2014/803.

[5] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk. Internet x.509 public key infrastructure certificate and
certificate revocation list (crl) profile. RFC 5280, RFC Editor,
May 2008. http://www.rfc-editor.org/rfc/rfc5280.txt.

[6] Ethereum White Paper. https://github.com/ethereum/wiki/
wiki/White-Paper. Accessed: 2017-01-02.

[7] C. Evans, C. Palmer, and R. Sleevi. Public key pinning extension
for http. RFC 7469, RFC Editor, April 2015. http://www.
rfc-editor.org/rfc/rfc7469.txt.

[8] D. Goodin. New hack on comodo reseller exposes private data.
Newspaper article, The Register, 2011. http://www.theregister.
co.uk/2011/05/24/comodo reseller hacked.

[9] K. J. Hoffman-Andrews, J. Automatic Certificate Management
Environment (ACME). Internet draft, Internet Security
Research Group, 2016.

[10] B. Laurie. Certificate transparency. ACM Queue, 12(8):10–19,
2014.

[11] J. Leyden. Inside ’operation black tulip’: Diginotar hack
analysed. Newspaper article, The Register, 2011. http://www.
theregister.co.uk/2011/09/06/diginotar audit damning fail.

[12] A. Loib. Namecoin. Technical report, Fakultät für Informatik,
Technische Universität München, August 2014.

[13] P. Maymounkov and D. Mazières. Kademlia: A peer-to-
peer information system based on the xor metric. In Revised
Papers from the First International Workshop on Peer-to-
Peer Systems, IPTPS ’01, pages 53–65, London, UK, UK, 2002.
Springer-Verlag.

[14] N. McAllister. Browser makers rush to block fake
google.com security cert. Newspaper article, The Register,
2011. http://www.theregister.co.uk/2013/01/04/turkish fake
google site certificate.

[15] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
May 2009.

[16] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin,
and C. Adams. X.509 internet public key infrastructure online
certificate status protocol - ocsp. RFC 6960, RFC Editor, June
2013. http://www.rfc-editor.org/rfc/rfc6960.txt.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. SIGCOMM Comput. Commun. Rev.,
31(4):149–160, Aug. 2001.

[18] S. Wilkinson et al. Storj - a peer-to-peer cloud storage network,
2014. https://storj.io/storj.pdf.

https://helix.stormhub.org/anss
https://en.bitcoin.it/wiki/Hashcash
http://www.rfc-editor.org/rfc/rfc4880.txt
http://eprint.iacr.org/2014/803
http://eprint.iacr.org/2014/803
http://www.rfc-editor.org/rfc/rfc5280.txt
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.rfc-editor.org/rfc/rfc7469.txt
http://www.rfc-editor.org/rfc/rfc7469.txt
http://www.theregister.co.uk/2011/05/24/comodo_reseller_hacked
http://www.theregister.co.uk/2011/05/24/comodo_reseller_hacked
http://www.theregister.co.uk/2011/09/06/diginotar_audit_damning_fail
http://www.theregister.co.uk/2011/09/06/diginotar_audit_damning_fail
http://www.theregister.co.uk/2013/01/04/turkish_fake_google_site_certificate
http://www.theregister.co.uk/2013/01/04/turkish_fake_google_site_certificate
http://www.rfc-editor.org/rfc/rfc6960.txt
https://storj.io/storj.pdf

	Introduction
	Blockchains
	Class PKI
	Issuing certificates in a class PKI
	Blockchain-based PKI

	Related work
	System model
	Protocol description
	Overview
	The blockchain truststore
	Migrating a DV certificate
	Migrating an EV certificate
	Booting up a v-node

	Security analysis
	Conclusion

